""" This file is AGPL-licensed. Some of the code in this file is from Clover Edition: https://github.com/cloveranon/Clover-Edition/blob/master/aidungeon/gpt2generator.py The license for Clover Edition is shown below: Copyright (c) 2019 Nick Walton Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --- Some of the code in this file is also from Hugging Face LogitsTransformers: https://github.com/huggingface/transformers Transformers is licensed under the Apache-2.0 License. The changes made to this file are mostly porting warper code to the torch methods. """ # Comments mostly taken from tpu_mtj_backend.py from __future__ import annotations import utils import torch import numpy as np if utils.koboldai_vars.use_colab_tpu: import jax import jax.numpy as jnp import tpu_mtj_backend def update_settings(): # This feels like a bad way to structure this koboldai_vars = utils.koboldai_vars Temperature.temperature = koboldai_vars.temp TopP.top_p = koboldai_vars.top_p TopK.top_k = koboldai_vars.top_k TopA.top_a = koboldai_vars.top_a TailFree.tfs = koboldai_vars.tfs Typical.typical = koboldai_vars.typical RepetitionPenalty.rep_pen = koboldai_vars.rep_pen RepetitionPenalty.rep_pen_range = koboldai_vars.rep_pen_range RepetitionPenalty.rep_pen_slope = koboldai_vars.rep_pen_slope RepetitionPenalty.use_alt_rep_pen = koboldai_vars.use_alt_rep_pen class Warper: """The backbone for implementing code which manipulates token logits. All Warpers should be singletons defined in the warpers.py file. To make a new warper/sampler: - Create your class, implementing `torch()`, `jax_dynamic`, `jax_static`, and `value_is_valid()`. Dynamic and static methods are seperated for Jax due to how it does JIT compilation of functions (from what I gather). These `static` methods are very picky about what you can and can't do with data at runtime and thus sometimes need to be implemented differently than the `dynamic` methods, which are more like the Torch methods. - Add it to Warper.from_id and tpu_mtj_backend.kobold_sample_static. - Add it to the UI/sampler_order. To implement the samplers on a new model type/interface, assuming you're dealing with Torch tensors, iterate over Warpers from sampler_order using `Warper.from_id()`, and apply changes with the `torch()` methods. """ @staticmethod def from_id(warper_id: int) -> Warper: return { 0: TopK, 1: TopA, 2: TopP, 3: TailFree, 4: Typical, 5: Temperature, 6: RepetitionPenalty, }[warper_id] @classmethod def torch(cls, scores: torch.Tensor) -> torch.Tensor: raise NotImplementedError("Please override `torch()`.") @classmethod def jax_dynamic(cls, scores: np.array) -> np.array: raise NotImplementedError("Please override `jax_dynamic()`.") @classmethod def jax_static(cls, scores: jnp.array) -> jnp.array: raise NotImplementedError("Please override `jax_static()`.") @classmethod def value_is_valid(cls) -> bool: raise NotImplementedError("Please override `value_is_valid()`.") class Temperature(Warper): """Temperature (just divide the logits by the temperature)""" temperature: float = 0.5 @classmethod def torch(cls, scores: torch.Tensor) -> torch.Tensor: return scores / cls.temperature @classmethod def jax_dynamic(cls, scores: np.array) -> np.array: return scores / cls.temperature @classmethod def jax_static(cls, scores: jnp.array) -> jnp.array: return scores / cls.temperature @classmethod def value_is_valid(cls) -> bool: return cls.temperature != 1.0 class TopP(Warper): """ Top-p (after sorting the remaining tokens again in descending order of logit, remove the ones that have cumulative softmax probability greater than p) """ top_p: float = 0.9 @classmethod def torch(cls, scores: torch.Tensor) -> torch.Tensor: sorted_logits, sorted_indices = torch.sort(scores, descending=False) cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1) # Remove tokens with cumulative top_p above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs <= (1 - cls.top_p) # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) return scores.masked_fill(indices_to_remove, -np.inf) @classmethod def jax_dynamic(cls, scores: np.array) -> np.array: # Sort the logits array in descending order, replace every element # with e (Euler's number) to the power of that element, and divide # each element of the new array by the sum of the elements in the # new array sorted_logits = -np.sort(-scores) probabilities = np.array(jax.nn.softmax(sorted_logits), copy=True) # Calculate cumulative_probabilities as the prefix-sum array of # probabilities cumulative_probabilities = np.cumsum(probabilities, axis=-1) # We want to remove tokens with cumulative probability higher # than top_p sorted_indices_to_remove = cumulative_probabilities > cls.top_p # Don't ever remove the token with the highest logit, even if # the probability is higher than top_p sorted_indices_to_remove[0] = False # Unsort and remove _, indices_to_remove = jax.lax.sort_key_val( np.argsort(-scores), sorted_indices_to_remove, ) return np.where(indices_to_remove, -np.inf, scores) @classmethod def jax_static(cls, scores: jnp.array) -> jnp.array: # Sort the logits array in descending order, replace every element # with e (Euler's number) to the power of that element, and divide # each element of the new array by the sum of the elements in the # new array sorted_logits = -jnp.sort(-scores) probabilities = jax.nn.softmax(sorted_logits) # Calculate cumulative_probabilities as the prefix-sum array of # probabilities cumulative_probabilities = jnp.cumsum(probabilities, axis=-1) # We want to remove tokens with cumulative probability higher # than top_p sorted_indices_to_remove = cumulative_probabilities > cls.top_p # Don't ever remove the token with the highest logit, even if # the probability is higher than top_p sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False) # Unsort and remove _, indices_to_remove = jax.lax.sort_key_val( jnp.argsort(-scores), sorted_indices_to_remove, ) return jnp.where(indices_to_remove, -jnp.inf, scores) @classmethod def value_is_valid(cls) -> bool: return cls.top_p < 1.0 class TopK(Warper): """ Top-k (keep only the k tokens with the highest logits and remove the rest, by setting their logits to negative infinity) """ top_k: int = 0 @classmethod def torch(cls, scores: torch.Tensor) -> torch.Tensor: top_k = min(max(cls.top_k, 1), scores.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = scores < torch.topk(scores, top_k)[0][..., -1, None] scores = scores.masked_fill(indices_to_remove, -np.inf) return scores @classmethod def jax_dynamic(cls, scores: np.array) -> np.array: # After sorting the logits array in descending order, # sorted_indices_to_remove is a 1D array that is True for tokens # in the sorted logits array we want to remove and False for ones # we want to keep, in this case the first top_k elements will be # False and the rest will be True sorted_indices_to_remove = np.arange(len(scores)) >= cls.top_k # Unsort the logits array back to its original configuration and # remove tokens we need to remove _, indices_to_remove = jax.lax.sort_key_val( np.argsort(-scores), sorted_indices_to_remove, ) return np.where(indices_to_remove, -np.inf, scores) @classmethod def jax_static(cls, scores: jnp.array) -> jnp.array: sorted_indices_to_remove = jnp.arange(len(scores)) >= cls.top_k _, indices_to_remove = jax.lax.sort_key_val( jnp.argsort(-scores), sorted_indices_to_remove, ) return jnp.where(indices_to_remove, -jnp.inf, scores) @classmethod def value_is_valid(cls) -> bool: return cls.top_k > 0 class TailFree(Warper): """ Tail free sampling (basically top-p a second time on remaining tokens except it's the "cumulative normalized absolute second finite differences of the softmax probabilities" instead of just the cumulative softmax probabilities) """ tfs: float = 1.0 @classmethod def torch(cls, scores: torch.Tensor) -> torch.Tensor: sorted_logits, sorted_indices = torch.sort(scores, descending=True) probs = sorted_logits.softmax(dim=-1) # Compute second derivative normalized CDF d2 = probs.diff().diff().abs() normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True) normalized_d2_cdf = normalized_d2.cumsum(dim=-1) # Remove tokens with CDF value above the threshold (token with 0 are kept) sorted_indices_to_remove = normalized_d2_cdf > cls.tfs # Centre the distribution around the cutoff as in the original implementation of the algorithm sorted_indices_to_remove = torch.cat( ( torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device), sorted_indices_to_remove, torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device), ), dim=-1, ) indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) scores = scores.masked_fill(indices_to_remove, -np.inf) return scores @classmethod def jax_dynamic(cls, scores: np.array) -> np.array: # Sort in descending order sorted_logits = -np.sort(-scores) # Softmax again probabilities = np.array(jax.nn.softmax(sorted_logits), copy=True) # Calculate the second finite differences of that array (i.e. # calculate the difference array and then calculate the difference # array of the difference array) d2 = np.diff(np.diff(probabilities)) # Get the absolute values of all those second finite differences d2 = np.abs(d2) # Normalize (all elements in the array are divided by the sum of the # array's elements) d2 = d2 / d2.sum(axis=-1, keepdims=True) # Get the prefix-sum array cumulative_d2 = np.cumsum(d2, axis=-1) # We will remove the tokens with a cumulative normalized absolute # second finite difference larger than the TFS value sorted_indices_to_remove = cumulative_d2 > cls.tfs # Don't remove the token with the highest logit sorted_indices_to_remove[0] = False # Since the d2 array has two fewer elements than the logits array, # we'll add two extra Trues to the end sorted_indices_to_remove = np.pad( sorted_indices_to_remove, (0, 2), constant_values=True, ) # Unsort and remove _, indices_to_remove = jax.lax.sort_key_val( np.argsort(-scores), sorted_indices_to_remove, ) return np.where(indices_to_remove, -np.inf, scores) @classmethod def jax_static(cls, scores: jnp.array) -> jnp.array: sorted_logits = -jnp.sort(-scores) probabilities = jax.nn.softmax(sorted_logits) d2 = jnp.diff(jnp.diff(probabilities)) d2 = jnp.abs(d2) d2 = d2 / d2.sum(axis=-1, keepdims=True) cumulative_d2 = jnp.cumsum(d2, axis=-1) sorted_indices_to_remove = cumulative_d2 > cls.tfs sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False) sorted_indices_to_remove = jnp.pad( sorted_indices_to_remove, (0, 2), constant_values=True, ) _, indices_to_remove = jax.lax.sort_key_val( jnp.argsort(-scores), sorted_indices_to_remove, ) return jnp.where(indices_to_remove, -jnp.inf, scores) @classmethod def value_is_valid(cls) -> bool: return cls.tfs < 1.0 class Typical(Warper): """Typical sampling, described in https://arxiv.org/pdf/2202.00666.pdf""" typical: float = 1.0 @classmethod def torch(cls, scores: torch.Tensor) -> torch.Tensor: # Compute softmax probabilities and the natural logarithms of them probs = scores.softmax(dim=-1) log_probs = probs.log() # Compute the negative of entropy, which is the sum of p*ln(p) for all p # in the set of softmax probabilities of the logits neg_entropy = (probs * log_probs).nansum(dim=-1, keepdim=True) # Determine absolute difference between the negative entropy and the # log probabilities entropy_deviation = (neg_entropy - log_probs).abs() # Keep certain tokens such that the sum of the entropy_deviation of the # kept tokens is the smallest possible value such that the sum of the # softmax probabilities of the kept tokens is at least the threshold # value (by sorting the tokens in ascending order of entropy_deviation # and then keeping the smallest possible number of tokens from the # beginning such that sum of softmax probabilities is at or above the # threshold) _, sorted_indices = torch.sort(entropy_deviation) sorted_logits = probs.gather(-1, sorted_indices) sorted_indices_to_remove = sorted_logits.cumsum(dim=-1) >= cls.typical sorted_indices_to_remove = sorted_indices_to_remove.roll(1, dims=-1) min_tokens_to_keep = 1 # Keep at least min_tokens_to_keep sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) scores = scores.masked_fill(indices_to_remove, -np.inf) return scores @classmethod def jax_dynamic(cls, scores: np.array) -> np.array: # Compute softmax probabilities and the natural logarithms of them probs = jax.nn.softmax(scores) with np.errstate(divide="ignore"): log_probs = np.log(probs) # Compute the negative of entropy, which is the sum of p*ln(p) for all p # in the set of softmax probabilities of the logits neg_entropy = np.nansum(probs * log_probs, axis=-1, keepdims=True) # Determine absolute difference between the negative entropy and the # log probabilities entropy_deviation = np.abs(neg_entropy - log_probs) # Keep certain tokens such that the sum of the entropy_deviation of the # kept tokens is the smallest possible value such that the sum of the # softmax probabilities of the kept tokens is at least the threshold # value (by sorting the tokens in ascending order of entropy_deviation # and then keeping the smallest possible number of tokens from the # beginning such that sum of softmax probabilities is at or above the # threshold) _, sorted_logits = jax.lax.sort_key_val(entropy_deviation, probs) sorted_indices_to_remove = np.cumsum(sorted_logits, axis=-1) >= cls.typical sorted_indices_to_remove = np.roll(sorted_indices_to_remove, 1, axis=-1) sorted_indices_to_remove[0] = False # Unsort and remove _, indices_to_remove = jax.lax.sort_key_val( jnp.argsort(entropy_deviation), sorted_indices_to_remove, ) return np.where(indices_to_remove, -jnp.inf, scores) @classmethod def jax_static(cls, scores: jnp.array) -> jnp.array: probs = jax.nn.softmax(scores) log_probs = jnp.log(probs) neg_entropy = jnp.nansum(probs * log_probs, axis=-1, keepdims=True) entropy_deviation = jnp.abs(neg_entropy - log_probs) _, sorted_logits = jax.lax.sort_key_val(entropy_deviation, probs) sorted_indices_to_remove = jnp.cumsum(sorted_logits, axis=-1) >= cls.typical sorted_indices_to_remove = jnp.roll(sorted_indices_to_remove, 1, axis=-1) sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False) _, indices_to_remove = jax.lax.sort_key_val( jnp.argsort(entropy_deviation), sorted_indices_to_remove, ) return jnp.where(indices_to_remove, -jnp.inf, scores) @classmethod def value_is_valid(cls) -> bool: return cls.typical < 1.0 class TopA(Warper): """ Top-a (remove all tokens that have softmax probability less than *m^2 where m is the maximum softmax probability) """ top_a: float = 0.0 @classmethod def torch(cls, scores: torch.Tensor) -> torch.Tensor: sorted_logits, sorted_indices = torch.sort(scores, descending=True) probs = sorted_logits.softmax(dim=-1) # Remove tokens with probability less than top_a*(max(probs))^2 (token with 0 are kept) probs_max = probs[..., 0, None] sorted_indices_to_remove = probs < probs_max * probs_max * cls.top_a indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) scores = scores.masked_fill(indices_to_remove, -np.inf) return scores @classmethod def jax_dynamic(cls, scores: np.array) -> np.array: # Replace every element in the logits array # with e (Euler's number) to the power of that element, and divide # each element of the new array by the sum of the elements in the # new array probabilities = np.array(jax.nn.softmax(scores), copy=True) # Find the largest probability probs_max = probabilities.max() # Remove tokens return np.where( probabilities < probs_max * probs_max * cls.top_a, -np.inf, scores ) @classmethod def jax_static(cls, scores: jnp.array) -> jnp.array: probabilities = jax.nn.softmax(scores) probs_max = probabilities.max() return jnp.where( probabilities < probs_max * probs_max * cls.top_a, -jnp.inf, scores ) @classmethod def value_is_valid(cls) -> bool: return cls.top_a > 0.0 class RepetitionPenalty(Warper): rep_pen: float = 1.0 rep_pen_slope: float = 0.0 rep_pen_range: int = 0 use_alt_rep_pen: bool = False @classmethod def torch(cls, scores: torch.Tensor, input_ids: torch.Tensor) -> torch.Tensor: cls.rep_pen_range = int(cls.rep_pen_range) clipped_penalty_range = min(input_ids.shape[-1], cls.rep_pen_range) if cls.rep_pen != 1.0: if cls.rep_pen_range > 0: if clipped_penalty_range < input_ids.shape[1]: input_ids = input_ids[..., -clipped_penalty_range:] if cls.rep_pen_slope != 0: _penalty = ( torch.arange( cls.rep_pen_range, dtype=scores.dtype, device=scores.device ) / (cls.rep_pen_range - 1) ) * 2.0 - 1 _penalty = (cls.rep_pen_slope * _penalty) / ( 1 + torch.abs(_penalty) * (cls.rep_pen_slope - 1) ) _penalty = 1 + ((_penalty + 1) / 2).unsqueeze(0) * (cls.rep_pen - 1) cls.rep_pen = _penalty[..., -clipped_penalty_range:] score = torch.gather(scores, 1, input_ids) if cls.use_alt_rep_pen: score = score - torch.log(cls.rep_pen) else: score = torch.where( score <= 0, score * cls.rep_pen, score / cls.rep_pen ) scores.scatter_(1, input_ids, score) return scores @classmethod def jax_static( cls, logits: jnp.array, tokens: jnp.array, generated_index, ) -> jnp.array: """ This gets called to apply repetition penalty to the 1D array logits using the provided 1D array of tokens to penalize """ rpslope = jnp.int32(cls.rep_pen_slope) rprange = jnp.int32(cls.rep_pen_range) repetition_penalty = cls.rep_pen clipped_rprange = jax.lax.cond( rprange > 0, lambda x: x, lambda x: tokens.shape[-1], rprange ) penalty_arange = jnp.roll( jnp.arange(tokens.shape[-1]) + (clipped_rprange - tokens.shape[-1]), generated_index, axis=-1, ) # Make a new array with the same length as the tokens array but with # each element replaced by the value at the corresponding index in the # logits array; e.g. # if logits is [77, 5, 3, 98] and tokens is [0, 1, 2, 3, 2, 3, 1], # then penalty_logits will be [77, 5, 3, 98, 3, 98, 5] penalty_logits = jnp.take(logits, tokens) # Repetition penalty slope def apply_slope(carry): repetition_penalty, rprange = carry _penalty = (penalty_arange / (rprange - 1)) * 2 - 1 _penalty = (rpslope * _penalty) / (1 + jnp.abs(_penalty) * (rpslope - 1)) _penalty = 1 + ((_penalty + 1) / 2) * (repetition_penalty - 1) return _penalty repetition_penalty = jax.lax.cond( (rpslope != 0.0) & (rprange > 0), # Not a typo; do not use `and` here, it makes JAX crash apply_slope, lambda carry: jnp.full(tokens.shape, carry[0]), (repetition_penalty, rprange), ) # Divide positive values by repetition_penalty and multiply negative # values by repetition_penalty (the academic publication that described # this technique actually just only divided, but that would cause tokens # with negative logits to become more likely, which is obviously wrong) if cls.use_alt_rep_pen: penalty_logits = jnp.where( penalty_arange >= 0, penalty_logits - jnp.log(repetition_penalty), penalty_logits, ) else: penalty_logits = jnp.where( penalty_arange >= 0, jnp.where( penalty_logits > 0, penalty_logits / repetition_penalty, penalty_logits * repetition_penalty, ), penalty_logits, ) # Finally, put those penalized logit values back into their original # positions in the logits array return logits.at[tokens].set(penalty_logits) @classmethod def jax_dynamic( cls, scores: jnp.array, tokens: jnp.array, generated_index, ) -> jnp.array: """ This gets called by generate_loop_fn to apply repetition penalty to the 1D array logits using the provided 1D array of tokens to penalize """ tokens = np.minimum( tokens, tpu_mtj_backend.params["n_vocab"] - 1 ) # https://github.com/google/jax/issues/3774 rpslope = np.int32(cls.rep_pen_slope) rprange = np.int32(cls.rep_pen_range) repetition_penalty = cls.rep_pen clipped_rprange = rprange if rprange > 0 else tokens.shape[-1] penalty_arange = np.roll( np.arange(tokens.shape[-1]) + (clipped_rprange - tokens.shape[-1]), generated_index, axis=-1, ) # Make a new array with the same length as the tokens array but with # each element replaced by the value at the corresponding index in the # logits array; e.g. # if logits is [77, 5, 3, 98] and tokens is [0, 1, 2, 3, 2, 3, 1], # then penalty_logits will be [77, 5, 3, 98, 3, 98, 5] penalty_logits = np.take(scores, tokens) # Repetition penalty slope if rpslope != 0.0 and rprange > 0: _penalty = (penalty_arange / (rprange - 1)) * 2 - 1 _penalty = (rpslope * _penalty) / (1 + np.abs(_penalty) * (rpslope - 1)) _penalty = 1 + ((_penalty + 1) / 2) * (repetition_penalty - 1) repetition_penalty = _penalty # Divide positive values by repetition_penalty and multiply negative # values by repetition_penalty (the academic publication that described # this technique actually just only divided, but that would cause tokens # with negative logits to become more likely, which is obviously wrong) if cls.use_alt_rep_pen: penalty_logits = np.where( penalty_arange >= 0, penalty_logits - np.log(repetition_penalty), penalty_logits, ) else: penalty_logits = np.where( penalty_arange >= 0, np.where( penalty_logits > 0, penalty_logits / repetition_penalty, penalty_logits * repetition_penalty, ), penalty_logits, ) # Finally, put those penalized logit values back into their original # positions in the logits array scores[tokens] = penalty_logits return scores @classmethod def value_is_valid(cls) -> bool: return cls.rep_pen != 1.0