from threading import Timer import re import shutil import json import subprocess import tempfile from urllib.error import HTTPError import requests import requests.adapters import time from transformers import __version__ as transformers_version from transformers import PreTrainedModel import packaging.version from tqdm.auto import tqdm import os import itertools import hashlib import huggingface_hub import packaging.version from pathlib import Path from typing import List, Optional HAS_ACCELERATE = packaging.version.parse(transformers_version) >= packaging.version.parse("4.20.0.dev0") try: import accelerate except ImportError: HAS_ACCELERATE = False vars = None num_shards: Optional[int] = None current_shard = 0 from_pretrained_model_name = "" from_pretrained_index_filename: Optional[str] = None from_pretrained_kwargs = {} bar = None layers_module_names: Optional[List[str]] = None module_names: Optional[List[str]] = None named_buffers: Optional[List[tuple]] = None default_sampler_order = [6, 0, 1, 2, 3, 4, 5] #==================================================================# # Decorator to prevent a function's actions from being run until # at least x seconds have passed without the function being called #==================================================================# def debounce(wait): def decorator(fun): def debounced(*args, **kwargs): def call_it(): fun(*args, **kwargs) try: debounced.t.cancel() except AttributeError: pass debounced.t = Timer(wait, call_it) debounced.t.start() return debounced return decorator #==================================================================# # Replace fancy quotes and apostrope's with standard ones #==================================================================# def fixquotes(txt): txt = txt.replace("“", '"') txt = txt.replace("”", '"') txt = txt.replace("’", "'") txt = txt.replace("`", "'") return txt #==================================================================# # #==================================================================# def trimincompletesentence(txt): # Cache length of text ln = len(txt) # Find last instance of punctuation (Borrowed from Clover-Edition by cloveranon) lastpunc = max(txt.rfind("."), txt.rfind("!"), txt.rfind("?")) # Is this the end of a quote? if(lastpunc < ln-1): if(txt[lastpunc+1] == '"'): lastpunc = lastpunc + 1 if(lastpunc >= 0): txt = txt[:lastpunc+1] return txt #==================================================================# # #==================================================================# def replaceblanklines(txt): txt = txt.replace("\n\n", "\n") return txt #==================================================================# # #==================================================================# def removespecialchars(txt, vars=None): if vars is None or vars.actionmode == 0: txt = re.sub(r"[#/@%<>{}+=~|\^]", "", txt) else: txt = re.sub(r"[#/@%{}+=~|\^]", "", txt) return txt #==================================================================# # If the next action follows a sentence closure, add a space #==================================================================# def addsentencespacing(txt, vars): # Don't add sentence spacing if submission is empty or starts with whitespace if(len(txt) == 0 or len(txt) != len(txt.lstrip())): return txt # Get last character of last action if(len(vars.actions) > 0): if(len(vars.actions[vars.actions.get_last_key()]) > 0): action = vars.actions[vars.actions.get_last_key()] lastchar = action[-1] if len(action) else "" else: # Last action is blank, this should never happen, but # since it did let's bail out. return txt else: action = vars.prompt lastchar = action[-1] if len(action) else "" if(lastchar != " "): txt = " " + txt return txt def singlelineprocessing(txt, vars): txt = vars.regex_sl.sub('', txt) if(len(vars.actions) > 0): if(len(vars.actions[vars.actions.get_last_key()]) > 0): action = vars.actions[vars.actions.get_last_key()] lastchar = action[-1] if len(action) else "" else: # Last action is blank, this should never happen, but # since it did let's bail out. return txt else: action = vars.prompt lastchar = action[-1] if len(action) else "" if(lastchar != "\n"): txt = txt + "\n" return txt #==================================================================# # Cleans string for use in file name #==================================================================# def cleanfilename(filename): filteredcharacters = ('/','\\') filename = "".join(c for c in filename if c not in filteredcharacters).rstrip() return filename #==================================================================# # Newline substitution for fairseq models #==================================================================# def encodenewlines(txt): if(vars.newlinemode == "s"): return txt.replace('\n', "") return txt def decodenewlines(txt): if(vars.newlinemode == "s"): return txt.replace("", '\n') if(vars.newlinemode == "ns"): return txt.replace("", '') return txt #==================================================================# # Returns number of layers given an HF model config #==================================================================# def num_layers(config): return config["n_layer"] if isinstance(config, dict) else config.num_layers if hasattr(config, "num_layers") else config.n_layer if hasattr(config, "n_layer") else config.num_hidden_layers if hasattr(config, 'num_hidden_layers') else None #==================================================================# # Downloads huggingface checkpoints using aria2c if possible #==================================================================# from flask_socketio import emit class Send_to_socketio(object): def write(self, bar): time.sleep(0.01) try: print(bar) emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True) except: pass def _download_with_aria2(aria2_config: str, total_length: int, directory: str = ".", user_agent=None, force_download=False, use_auth_token=None): import transformers lengths = {} s = requests.Session() s.mount("http://", requests.adapters.HTTPAdapter(max_retries=requests.adapters.Retry(total=120, backoff_factor=1))) bar = None done = False secret = os.urandom(17).hex() try: with tempfile.NamedTemporaryFile("w+b", delete=False) as f: f.write(aria2_config) f.flush() p = subprocess.Popen(["aria2c", "-x", "10", "-s", "10", "-j", "10", "--enable-rpc=true", f"--rpc-secret={secret}", "--rpc-listen-port", str(vars.aria2_port), "--disable-ipv6", "--file-allocation=trunc", "--allow-overwrite", "--auto-file-renaming=false", "-d", directory, "-i", f.name, "-U", transformers.file_utils.http_user_agent(user_agent)] + (["-c"] if not force_download else []) + ([f"--header='Authorization: Bearer {use_auth_token}'"] if use_auth_token else []), stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) while p.poll() is None: r = s.post(f"http://localhost:{vars.aria2_port}/jsonrpc", json={"jsonrpc": "2.0", "id": "kai", "method": "aria2.tellActive", "params": [f"token:{secret}"]}).json()["result"] if not r: s.close() if bar is not None: bar.n = bar.total bar.close() p.terminate() done = True break if bar is None: bar = tqdm(total=total_length, desc=f"[aria2] Downloading model", unit="B", unit_scale=True, unit_divisor=1000) visited = set() for x in r: filename = x["files"][0]["path"] lengths[filename] = (int(x["completedLength"]), int(x["totalLength"])) visited.add(filename) for k, v in lengths.items(): if k not in visited: lengths[k] = (v[1], v[1]) bar.n = sum(v[0] for v in lengths.values()) bar.update() time.sleep(0.1) path = f.name except Exception as e: p.terminate() raise e finally: try: os.remove(path) except OSError: pass code = p.wait() if not done and code: raise OSError(f"aria2 exited with exit code {code}") def _transformers22_aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs): import transformers import transformers.modeling_utils from huggingface_hub import HfFolder if use_auth_token: if isinstance(use_auth_token, str): token = use_auth_token else: token = HfFolder.get_token() if token is None: raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.") _cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE _revision = revision if revision is not None else huggingface_hub.constants.DEFAULT_REVISION sharded = False headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)} if use_auth_token: headers["authorization"] = f"Bearer {use_auth_token}" storage_folder = os.path.join(_cache_dir, huggingface_hub.file_download.repo_folder_name(repo_id=pretrained_model_name_or_path, repo_type="model")) os.makedirs(storage_folder, exist_ok=True) def is_cached(filename): try: huggingface_hub.hf_hub_download(pretrained_model_name_or_path, filename, cache_dir=cache_dir, local_files_only=True) except ValueError: return False return True while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file try: filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME except AttributeError: return url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=revision) if is_cached(filename) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers): break if sharded: return else: sharded = True if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download filenames = [transformers.modeling_utils.WEIGHTS_NAME] else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it map_filename = huggingface_hub.hf_hub_download(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent) with open(map_filename) as f: map_data = json.load(f) filenames = set(map_data["weight_map"].values()) urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=revision) for n in filenames] if not force_download: urls = [u for u, n in zip(urls, filenames) if not is_cached(n)] if not urls: return blob_paths = [] # This section is a modified version of hf_hub_download from huggingface_hub # See https://github.com/huggingface/huggingface_hub/blob/main/LICENSE for license for u, n in zip(urls, filenames): relative_filename = os.path.join(*n.split("/")) if not local_files_only: try: r = huggingface_hub.file_download._request_wrapper( method="HEAD", url=u, headers=headers, allow_redirects=False, follow_relative_redirects=True, proxies=proxies, timeout=10, ) try: r.raise_for_status() except HTTPError as e: error_code = r.headers.get("X-Error-Code") if error_code != "EntryNotFound": raise RuntimeError(f"HEAD {u} failed with error code {r.status_code}") commit_hash = r.headers.get(huggingface_hub.file_download.HUGGINGFACE_HEADER_X_REPO_COMMIT) if commit_hash is not None: no_exist_file_path = ( Path(storage_folder) / ".no_exist" / commit_hash / relative_filename ) no_exist_file_path.parent.mkdir(parents=True, exist_ok=True) no_exist_file_path.touch() huggingface_hub.file_download._cache_commit_hash_for_specific_revision( storage_folder, _revision, commit_hash ) raise commit_hash = r.headers[huggingface_hub.file_download.HUGGINGFACE_HEADER_X_REPO_COMMIT] if commit_hash is None: raise OSError( "Distant resource does not seem to be on huggingface.co (missing" " commit header)." ) etag = r.headers.get(huggingface_hub.file_download.HUGGINGFACE_HEADER_X_LINKED_ETAG) or r.headers.get( "ETag" ) # We favor a custom header indicating the etag of the linked resource, and # we fallback to the regular etag header. # If we don't have any of those, raise an error. if etag is None: raise OSError( "Distant resource does not have an ETag, we won't be able to" " reliably ensure reproducibility." ) etag = huggingface_hub.file_download._normalize_etag(etag) # In case of a redirect, save an extra redirect on the request.get call, # and ensure we download the exact atomic version even if it changed # between the HEAD and the GET (unlikely, but hey). # Useful for lfs blobs that are stored on a CDN. if 300 <= r.status_code <= 399: url_to_download = r.headers["Location"] if ( "lfs.huggingface.co" in url_to_download or "lfs-staging.huggingface.co" in url_to_download ): # Remove authorization header when downloading a LFS blob headers.pop("authorization", None) except (requests.exceptions.SSLError, requests.exceptions.ProxyError): # Actually raise for those subclasses of ConnectionError raise except ( requests.exceptions.ConnectionError, requests.exceptions.Timeout, huggingface_hub.file_download.OfflineModeIsEnabled, ): # Otherwise, our Internet connection is down. # etag is None pass if etag is None: # In those cases, we cannot force download. if force_download: raise ValueError( "We have no connection or you passed local_files_only, so" " force_download is not an accepted option." ) if huggingface_hub.file_download.REGEX_COMMIT_HASH.match(_revision): commit_hash = _revision else: ref_path = os.path.join(storage_folder, "refs", _revision) with open(ref_path) as f: commit_hash = f.read() pointer_path = os.path.join( storage_folder, "snapshots", commit_hash, relative_filename ) if os.path.exists(pointer_path): return pointer_path # If we couldn't find an appropriate file on disk, # raise an error. # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise huggingface_hub.file_download.LocalEntryNotFoundError( "Cannot find the requested files in the disk cache and" " outgoing traffic has been disabled. To enable hf.co look-ups" " and downloads online, set 'local_files_only' to False." ) else: raise huggingface_hub.file_download.LocalEntryNotFoundError( "Connection error, and we cannot find the requested files in" " the disk cache. Please try again or make sure your Internet" " connection is on." ) # From now on, etag and commit_hash are not None. blob_path = os.path.join(storage_folder, "blobs", etag) pointer_path = os.path.join( storage_folder, "snapshots", commit_hash, relative_filename ) os.makedirs(os.path.dirname(blob_path), exist_ok=True) os.makedirs(os.path.dirname(pointer_path), exist_ok=True) # if passed revision is not identical to commit_hash # then revision has to be a branch name or tag name. # In that case store a ref. huggingface_hub.file_download._cache_commit_hash_for_specific_revision(storage_folder, _revision, commit_hash) if os.path.exists(pointer_path) and not force_download: return pointer_path if os.path.exists(blob_path) and not force_download: # we have the blob already, but not the pointer huggingface_hub.file_download.logger.info("creating pointer to %s from %s", blob_path, pointer_path) huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path) return pointer_path # Some Windows versions do not allow for paths longer than 255 characters. # In this case, we must specify it is an extended path by using the "\\?\" prefix. if os.name == "nt" and len(os.path.abspath(blob_path)) > 255: blob_path = "\\\\?\\" + os.path.abspath(blob_path) blob_paths.append(blob_path) filenames = blob_paths headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls] for n in filenames: prefix, suffix = n.rsplit("/", 1) path = os.path.join(prefix, "kai-tempfile." + suffix + ".aria2") if os.path.exists(path): os.remove(path) path = os.path.join(prefix, "kai-tempfile." + suffix) if os.path.exists(path): os.remove(path) total_length = sum(int(h["Content-Length"]) for h in headers) aria2_config = "\n".join(f"{u}\n out={os.path.join(prefix, 'kai-tempfile.' + suffix)}" for u, n in zip(urls, filenames) for prefix, suffix in [n.rsplit("/", 1)]).encode() _download_with_aria2(aria2_config, total_length, use_auth_token=token if use_auth_token else None, user_agent=user_agent, force_download=force_download) for u, n in zip(urls, filenames): prefix, suffix = n.rsplit("/", 1) os.rename(os.path.join(prefix, "kai-tempfile." + suffix), os.path.join(prefix, suffix)) def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs): import transformers import transformers.modeling_utils from huggingface_hub import HfFolder if shutil.which("aria2c") is None: # Don't do anything if aria2 is not installed return if local_files_only: # If local_files_only is true, we obviously don't need to download anything return if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path + ".index") or transformers.modeling_utils.is_remote_url(pretrained_model_name_or_path): return if proxies: print("WARNING: KoboldAI does not support using aria2 to download models from huggingface.co through a proxy. Disabling aria2 download mode.") return if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.22.0.dev0"): return _transformers22_aria2_hook(pretrained_model_name_or_path, force_download=force_download, cache_dir=cache_dir, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, revision=revision, **kwargs) if use_auth_token: if isinstance(use_auth_token, str): token = use_auth_token else: token = HfFolder.get_token() if token is None: raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.") _cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE sharded = False headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)} if use_auth_token: headers["authorization"] = f"Bearer {use_auth_token}" def is_cached(url): try: huggingface_hub.cached_download(url, cache_dir=cache_dir, local_files_only=True) except ValueError: return False return True while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file try: filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME except AttributeError: return url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=revision) if is_cached(url) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers): break if sharded: return else: sharded = True if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download filenames = [transformers.modeling_utils.WEIGHTS_NAME] else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it map_filename = huggingface_hub.cached_download(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent) with open(map_filename) as f: map_data = json.load(f) filenames = set(map_data["weight_map"].values()) urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=revision) for n in filenames] if not force_download: urls = [u for u in urls if not is_cached(u)] if not urls: return etags = [h.get("X-Linked-Etag") or h.get("ETag") for u in urls for h in [requests.head(u, headers=headers, allow_redirects=False, proxies=proxies, timeout=10).headers]] headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls] filenames = [hashlib.sha256(u.encode("utf-8")).hexdigest() + "." + hashlib.sha256(t.encode("utf-8")).hexdigest() for u, t in zip(urls, etags)] for n in filenames: path = os.path.join(_cache_dir, "kai-tempfile." + n + ".aria2") if os.path.exists(path): os.remove(path) path = os.path.join(_cache_dir, "kai-tempfile." + n) if os.path.exists(path): os.remove(path) if force_download: path = os.path.join(_cache_dir, n + ".json") if os.path.exists(path): os.remove(path) path = os.path.join(_cache_dir, n) if os.path.exists(path): os.remove(path) total_length = sum(int(h["Content-Length"]) for h in headers) aria2_config = "\n".join(f"{u}\n out=kai-tempfile.{n}" for u, n in zip(urls, filenames)).encode() _download_with_aria2(aria2_config, total_length, directory=_cache_dir, use_auth_token=token if use_auth_token else None, user_agent=user_agent, force_download=force_download) for u, t, n in zip(urls, etags, filenames): os.rename(os.path.join(_cache_dir, "kai-tempfile." + n), os.path.join(_cache_dir, n)) with open(os.path.join(_cache_dir, n + ".json"), "w") as f: json.dump({"url": u, "etag": t}, f) #==================================================================# # Given the path to a pytorch_model.bin.index.json, returns how many # shards there are in the model #==================================================================# def get_num_shards(filename): with open(filename) as f: map_data = json.load(f) return len(set(map_data["weight_map"].values())) #==================================================================# # Given the name/path of a sharded model and the path to a # pytorch_model.bin.index.json, returns a list of weight names in the # sharded model. Requires lazy loader to be enabled to work properl #==================================================================# def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs): import transformers.modeling_utils import torch shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision) return list(itertools.chain(*(torch.load(p, map_location="cpu").keys() for p in shard_paths))) #==================================================================# # Given a PreTrainedModel, returns the list of module names that correspond # to the model's hidden layers. #==================================================================# def get_layers_module_names(model: PreTrainedModel) -> List[str]: names: List[str] = [] def recurse(module, head=""): for c in module.named_children(): name = head + c[0] if c[0].isnumeric() and any(c[1].__class__.__name__.endswith(suffix) for suffix in ("Block", "Layer")): names.append(name) else: recurse(c[1], head=name + ".") recurse(model) return names #==================================================================# # Given a PreTrainedModel, returns the module name that corresponds # to the model's input embeddings. #==================================================================# def get_input_embeddings_module_name(model: PreTrainedModel) -> str: embeddings = model.get_input_embeddings() def recurse(module, head=""): for c in module.named_children(): name = head + c[0] if c[1] is embeddings: return name else: return recurse(c[1], head=name + ".") return recurse(model) #==================================================================# # Given a PreTrainedModel and a list of module names, returns a list # of module names such that the union of the set of modules given as input # and the set of modules returned as output contains all modules in the model. #==================================================================# def get_missing_module_names(model: PreTrainedModel, names: List[str]) -> List[str]: missing_names: List[str] = [] def recurse(module, head=""): for c in module.named_children(): name = head + c[0] if any(name.startswith(n) for n in names): continue if next(c[1].named_children(), None) is None: missing_names.append(name) else: recurse(c[1], head=name + ".") recurse(model) return missing_names