#!/usr/bin/python3 #==================================================================# # KoboldAI # Version: 1.17.0 # By: KoboldAIDev and the KoboldAI Community #==================================================================# # External packages import eventlet eventlet.monkey_patch(all=True, thread=False) import os os.system("") __file__ = os.path.dirname(os.path.realpath(__file__)) os.chdir(__file__) os.environ['EVENTLET_THREADPOOL_SIZE'] = '1' os.environ['TOKENIZERS_PARALLELISM'] = 'false' from eventlet import tpool from os import path, getcwd import time import re import json import collections import zipfile import packaging import contextlib import traceback import threading import markdown import bleach import itertools import bisect from collections.abc import Iterable from typing import Any, Callable, TypeVar, Tuple, Union, Dict, Set, List import requests import html import argparse import sys import gc import lupa # KoboldAI import fileops import gensettings from utils import debounce import utils import structures if lupa.LUA_VERSION[:2] != (5, 4): print(f"Please install lupa==1.10. You have lupa {lupa.__version__}.", file=sys.stderr) #==================================================================# # Variables & Storage #==================================================================# # Terminal tags for colored text class colors: PURPLE = '\033[95m' BLUE = '\033[94m' CYAN = '\033[96m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' END = '\033[0m' UNDERLINE = '\033[4m' # AI models mainmenu = [ ["Load a model from its directory", "NeoCustom", ""], ["Load an old GPT-2 model (eg CloverEdition)", "GPT2Custom", ""], ["Skein 6B (Hybrid)", "KoboldAI/GPT-J-6B-Skein", "16GB"], ["Janeway 6B (Novel)", "KoboldAI/GPT-J-6B-Janeway", "16GB"], ["Adventure 6B", "KoboldAI/GPT-J-6B-Adventure", "16GB"], ["Lit 6B (NSFW)", "hakurei/lit-6B", "16GB"], ["Shinen 6B (NSFW)", "KoboldAI/GPT-J-6B-Shinen", "16GB"], ["Convo 6B (Chatbot)", "hitomi-team/convo-6B", "16GB"], ["C1 6B (Chatbot)", "hakurei/c1-6B", "16GB"], ["Janeway Neo 2.7B (Novel)", "KoboldAI/GPT-Neo-2.7B-Janeway", "8GB"], ["Janeway FSD 2.7B (Novel)", "KoboldAI/fairseq-dense-2.7B-Janeway", "8GB"], ["Adventure 2.7B", "KoboldAI/GPT-Neo-2.7B-AID", "8GB"], ["Picard 2.7B (Novel)", "KoboldAI/GPT-Neo-2.7B-Picard", "8GB"], ["Horni 2.7B (NSFW)", "KoboldAI/GPT-Neo-2.7B-Horni", "8GB"], ["Horni-LN 2.7B (Novel)", "KoboldAI/GPT-Neo-2.7B-Horni-LN", "8GB"], ["Shinen 2.7B (NSFW)", "KoboldAI/GPT-Neo-2.7B-Shinen", "8GB"], ["Untuned GPT-Neo/J", "gptneolist", ""], ["Untuned Fairseq Dense", "fsdlist", ""], ["Untuned XGLM", "xglmlist", ""], ["Untuned GPT2", "gpt2list", ""], ["Online Services", "apilist", ""], ["Read Only (No AI)", "ReadOnly", ""] ] gptneolist = [ ["GPT-J 6B", "EleutherAI/gpt-j-6B", "16GB"], ["GPT-Neo 2.7B", "EleutherAI/gpt-neo-2.7B", "8GB"], ["GPT-Neo 1.3B", "EleutherAI/gpt-neo-1.3B", "6GB"], ["Return to Main Menu", "Return", ""], ] gpt2list = [ ["GPT-2 XL", "gpt2-xl", "6GB"], ["GPT-2 Large", "gpt2-large", "4GB"], ["GPT-2 Med", "gpt2-medium", "2GB"], ["GPT-2", "gpt2", "2GB"], ["Return to Main Menu", "Return", ""], ] fsdlist = [ ["Fairseq Dense 13B", "KoboldAI/fairseq-dense-13B", "32GB"], ["Fairseq Dense 6.7B", "KoboldAI/fairseq-dense-6.7B", "16GB"], ["Fairseq Dense 2.7B", "KoboldAI/fairseq-dense-2.7B", "8GB"], ["Fairseq Dense 1.3B", "KoboldAI/fairseq-dense-1.3B", "6GB"], ["Fairseq Dense 355M", "KoboldAI/fairseq-dense-355M", ""], ["Fairseq Dense 125M", "KoboldAI/fairseq-dense-125M", ""], ["Return to Main Menu", "Return", ""], ] xglmlist = [ ["XGLM 4.5B (Larger Dataset)", "facebook/xglm-4.5B", ""], ["XGLM 7.5B", "facebook/xglm-7.5B", ""], ["XGLM 2.9B", "facebook/xglm-2.9B", ""], ["XGLM 1.7B", "facebook/xglm-1.7B", ""], ["XGLM 564M", "facebook/xglm-564M", ""], ["Return to Main Menu", "Return", ""], ] apilist = [ ["GooseAI API (requires API key)", "GooseAI", ""], ["OpenAI API (requires API key)", "OAI", ""], ["InferKit API (requires API key)", "InferKit", ""], ["KoboldAI Server API (Old Google Colab)", "Colab", ""], ["Return to Main Menu", "Return", ""], ] # Variables class vars: lastact = "" # The last action received from the user submission = "" # Same as above, but after applying input formatting lastctx = "" # The last context submitted to the generator model = "" # Model ID string chosen at startup model_type = "" # Model Type (Automatically taken from the model config) noai = False # Runs the script without starting up the transformers pipeline aibusy = False # Stops submissions while the AI is working max_length = 1024 # Maximum number of tokens to submit per action ikmax = 3000 # Maximum number of characters to submit to InferKit genamt = 80 # Amount of text for each action to generate ikgen = 200 # Number of characters for InferKit to generate rep_pen = 1.1 # Default generator repetition_penalty rep_pen_slope = 0.7 # Default generator repetition penalty slope rep_pen_range = 1024 # Default generator repetition penalty range temp = 0.5 # Default generator temperature top_p = 0.9 # Default generator top_p top_k = 0 # Default generator top_k tfs = 1.0 # Default generator tfs (tail-free sampling) typical = 1.0 # Default generator typical sampling threshold numseqs = 1 # Number of sequences to ask the generator to create gamestarted = False # Whether the game has started (disables UI elements) gamesaved = True # Whether or not current game is saved serverstarted = False # Whether or not the Flask server has started prompt = "" # Prompt memory = "" # Text submitted to memory field authornote = "" # Text submitted to Author's Note field authornotetemplate = "[Author's note: <|>]" # Author's note template setauthornotetemplate = authornotetemplate # Saved author's note template in settings andepth = 3 # How far back in history to append author's note actions = structures.KoboldStoryRegister() # Actions submitted by user and AI actions_metadata = {} # List of dictonaries, one dictonary for every action that contains information about the action like alternative options. # Contains at least the same number of items as actions. Back action will remove an item from actions, but not actions_metadata # Dictonary keys are: # Selected Text: (text the user had selected. None when this is a newly generated action) # Alternative Generated Text: {Text, Pinned, Previous Selection, Edited} # worldinfo = [] # List of World Info key/value objects worldinfo_i = [] # List of World Info key/value objects sans uninitialized entries worldinfo_u = {} # Dictionary of World Info UID - key/value pairs wifolders_d = {} # Dictionary of World Info folder UID-info pairs wifolders_l = [] # List of World Info folder UIDs wifolders_u = {} # Dictionary of pairs of folder UID - list of WI UID modelconfig = {} # Raw contents of the model's config.json, or empty dictionary if none found lua_state = None # Lua state of the Lua scripting system lua_koboldbridge = None # `koboldbridge` from bridge.lua lua_kobold = None # `kobold` from` bridge.lua lua_koboldcore = None # `koboldcore` from bridge.lua lua_logname = ... # Name of previous userscript that logged to terminal lua_running = False # Whether or not Lua is running (i.e. wasn't stopped due to an error) lua_edited = set() # Set of chunk numbers that were edited from a Lua generation modifier lua_deleted = set() # Set of chunk numbers that were deleted from a Lua generation modifier generated_tkns = 0 # If using a backend that supports Lua generation modifiers, how many tokens have already been generated, otherwise 0 abort = False # Whether or not generation was aborted by clicking on the submit button during generation compiling = False # If using a TPU Colab, this will be set to True when the TPU backend starts compiling and then set to False again checking = False # Whether or not we are actively checking to see if TPU backend is compiling or not spfilename = "" # Filename of soft prompt to load, or an empty string if not using a soft prompt userscripts = [] # List of userscripts to load last_userscripts = [] # List of previous userscript filenames from the previous time userscripts were send via usstatitems corescript = "default.lua" # Filename of corescript to load # badwords = [] # Array of str/chr values that should be removed from output badwordsids = [[13460], [6880], [50256], [42496], [4613], [17414], [22039], [16410], [27], [29], [38430], [37922], [15913], [24618], [28725], [58], [47175], [36937], [26700], [12878], [16471], [37981], [5218], [29795], [13412], [45160], [3693], [49778], [4211], [20598], [36475], [33409], [44167], [32406], [29847], [29342], [42669], [685], [25787], [7359], [3784], [5320], [33994], [33490], [34516], [43734], [17635], [24293], [9959], [23785], [21737], [28401], [18161], [26358], [32509], [1279], [38155], [18189], [26894], [6927], [14610], [23834], [11037], [14631], [26933], [46904], [22330], [25915], [47934], [38214], [1875], [14692], [41832], [13163], [25970], [29565], [44926], [19841], [37250], [49029], [9609], [44438], [16791], [17816], [30109], [41888], [47527], [42924], [23984], [49074], [33717], [31161], [49082], [30138], [31175], [12240], [14804], [7131], [26076], [33250], [3556], [38381], [36338], [32756], [46581], [17912], [49146]] # Tokenized array of badwords used to prevent AI artifacting badwordsids_neox = [[0], [1], [44162], [9502], [12520], [31841], [36320], [49824], [34417], [6038], [34494], [24815], [26635], [24345], [3455], [28905], [44270], [17278], [32666], [46880], [7086], [43189], [37322], [17778], [20879], [49821], [3138], [14490], [4681], [21391], [26786], [43134], [9336], [683], [48074], [41256], [19181], [29650], [28532], [36487], [45114], [46275], [16445], [15104], [11337], [1168], [5647], [29], [27482], [44965], [43782], [31011], [42944], [47389], [6334], [17548], [38329], [32044], [35487], [2239], [34761], [7444], [1084], [12399], [18990], [17636], [39083], [1184], [35830], [28365], [16731], [43467], [47744], [1138], [16079], [40116], [45564], [18297], [42368], [5456], [18022], [42696], [34476], [23505], [23741], [39334], [37944], [45382], [38709], [33440], [26077], [43600], [34418], [36033], [6660], [48167], [48471], [15775], [19884], [41533], [1008], [31053], [36692], [46576], [20095], [20629], [31759], [46410], [41000], [13488], [30952], [39258], [16160], [27655], [22367], [42767], [43736], [49694], [13811], [12004], [46768], [6257], [37471], [5264], [44153], [33805], [20977], [21083], [25416], [14277], [31096], [42041], [18331], [33376], [22372], [46294], [28379], [38475], [1656], [5204], [27075], [50001], [16616], [11396], [7748], [48744], [35402], [28120], [41512], [4207], [43144], [14767], [15640], [16595], [41305], [44479], [38958], [18474], [22734], [30522], [46267], [60], [13976], [31830], [48701], [39822], [9014], [21966], [31422], [28052], [34607], [2479], [3851], [32214], [44082], [45507], [3001], [34368], [34758], [13380], [38363], [4299], [46802], [30996], [12630], [49236], [7082], [8795], [5218], [44740], [9686], [9983], [45301], [27114], [40125], [1570], [26997], [544], [5290], [49193], [23781], [14193], [40000], [2947], [43781], [9102], [48064], [42274], [18772], [49384], [9884], [45635], [43521], [31258], [32056], [47686], [21760], [13143], [10148], [26119], [44308], [31379], [36399], [23983], [46694], [36134], [8562], [12977], [35117], [28591], [49021], [47093], [28653], [29013], [46468], [8605], [7254], [25896], [5032], [8168], [36893], [38270], [20499], [27501], [34419], [29547], [28571], [36586], [20871], [30537], [26842], [21375], [31148], [27618], [33094], [3291], [31789], [28391], [870], [9793], [41361], [47916], [27468], [43856], [8850], [35237], [15707], [47552], [2730], [41449], [45488], [3073], [49806], [21938], [24430], [22747], [20924], [46145], [20481], [20197], [8239], [28231], [17987], [42804], [47269], [29972], [49884], [21382], [46295], [36676], [34616], [3921], [26991], [27720], [46265], [654], [9855], [40354], [5291], [34904], [44342], [2470], [14598], [880], [19282], [2498], [24237], [21431], [16369], [8994], [44524], [45662], [13663], [37077], [1447], [37786], [30863], [42854], [1019], [20322], [4398], [12159], [44072], [48664], [31547], [18736], [9259], [31], [16354], [21810], [4357], [37982], [5064], [2033], [32871], [47446], [62], [22158], [37387], [8743], [47007], [17981], [11049], [4622], [37916], [36786], [35138], [29925], [14157], [18095], [27829], [1181], [22226], [5709], [4725], [30189], [37014], [1254], [11380], [42989], [696], [24576], [39487], [30119], [1092], [8088], [2194], [9899], [14412], [21828], [3725], [13544], [5180], [44679], [34398], [3891], [28739], [14219], [37594], [49550], [11326], [6904], [17266], [5749], [10174], [23405], [9955], [38271], [41018], [13011], [48392], [36784], [24254], [21687], [23734], [5413], [41447], [45472], [10122], [17555], [15830], [47384], [12084], [31350], [47940], [11661], [27988], [45443], [905], [49651], [16614], [34993], [6781], [30803], [35869], [8001], [41604], [28118], [46462], [46762], [16262], [17281], [5774], [10943], [5013], [18257], [6750], [4713], [3951], [11899], [38791], [16943], [37596], [9318], [18413], [40473], [13208], [16375]] deletewi = None # Temporary storage for UID to delete wirmvwhtsp = False # Whether to remove leading whitespace from WI entries widepth = 3 # How many historical actions to scan for WI hits mode = "play" # Whether the interface is in play, memory, or edit mode editln = 0 # Which line was last selected in Edit Mode gpu_device = 0 # Which PyTorch device to use when using pure GPU generation url = "https://api.inferkit.com/v1/models/standard/generate" # InferKit API URL oaiurl = "" # OpenAI API URL oaiengines = "https://api.openai.com/v1/engines" colaburl = "" # Ngrok url for Google Colab mode apikey = "" # API key to use for InferKit API calls oaiapikey = "" # API key to use for OpenAI API calls savedir = getcwd()+"\stories" hascuda = False # Whether torch has detected CUDA on the system usegpu = False # Whether to launch pipeline with GPU support custmodpth = "" # Filesystem location of custom model to run formatoptns = {'frmttriminc': True, 'frmtrmblln': False, 'frmtrmspch': False, 'frmtadsnsp': False, 'singleline': False} # Container for state of formatting options importnum = -1 # Selection on import popup list importjs = {} # Temporary storage for import data loadselect = "" # Temporary storage for story filename to load spselect = "" # Temporary storage for soft prompt filename to load spmeta = None # Metadata of current soft prompt, or None if not using a soft prompt sp = None # Current soft prompt tensor (as a NumPy array) sp_length = 0 # Length of current soft prompt in tokens, or 0 if not using a soft prompt has_genmod = False # Whether or not at least one loaded Lua userscript has a generation modifier svowname = "" # Filename that was flagged for overwrite confirm saveow = False # Whether or not overwrite confirm has been displayed autosave = False # Whether or not to automatically save after each action genseqs = [] # Temporary storage for generated sequences recentback = False # Whether Back button was recently used without Submitting or Retrying after recentrng = None # If a new random game was recently generated without Submitting after, this is the topic used (as a string), otherwise this is None recentrngm = None # If a new random game was recently generated without Submitting after, this is the memory used (as a string), otherwise this is None useprompt = False # Whether to send the full prompt with every submit action breakmodel = False # For GPU users, whether to use both system RAM and VRAM to conserve VRAM while offering speedup compared to CPU-only bmsupported = False # Whether the breakmodel option is supported (GPT-Neo/GPT-J/XGLM only, currently) nobreakmodel = False # Something specifically requested Breakmodel to be disabled (For example a models config) smandelete = False # Whether stories can be deleted from inside the browser smanrename = False # Whether stories can be renamed from inside the browser allowsp = False # Whether we are allowed to use soft prompts (by default enabled if we're using GPT-2, GPT-Neo or GPT-J) modeldim = -1 # Embedding dimension of your model (e.g. it's 4096 for GPT-J-6B and 2560 for GPT-Neo-2.7B) laststory = None # Filename (without extension) of most recent story JSON file we loaded regex_sl = re.compile(r'\n*(?<=.) *\n(.|\n)*') # Pattern for limiting the output to a single line acregex_ai = re.compile(r'\n* *>(.|\n)*') # Pattern for matching adventure actions from the AI so we can remove them acregex_ui = re.compile(r'^ *(>.*)$', re.MULTILINE) # Pattern for matching actions in the HTML-escaped story so we can apply colouring, etc (make sure to encase part to format in parentheses) comregex_ai = re.compile(r'(?:\n<\|(?:.|\n)*?\|>(?=\n|$))|(?:<\|(?:.|\n)*?\|>\n?)') # Pattern for matching comments to remove them before sending them to the AI comregex_ui = re.compile(r'(<\|(?:.|\n)*?\|>)') # Pattern for matching comments in the editor chatmode = False chatname = "You" adventure = False actionmode = 1 dynamicscan = False host = False nopromptgen = False rngpersist = False nogenmod = False welcome = False # Custom Welcome Text (False is default) newlinemode = "n" quiet = False # If set will suppress any story text from being printed to the console (will only be seen on the client web page) debug = False # If set to true, will send debug information to the client for display lazy_load = True # Whether or not to use torch_lazy_loader.py for transformers models in order to reduce CPU memory usage use_colab_tpu = os.environ.get("COLAB_TPU_ADDR", "") != "" # Whether or not we're in a Colab TPU instance and are going to use the TPU rather than the CPU utils.vars = vars #==================================================================# # Function to get model selection at startup #==================================================================# def getModelSelection(modellist): print(" # Model\t\t\t\t\t\tVRAM\n ========================================================") i = 1 for m in modellist: print(" {0} - {1}\t\t\t{2}".format("{:<2}".format(i), m[0].ljust(25), m[2])) i += 1 print(" "); modelsel = 0 vars.model = '' while(vars.model == ''): modelsel = input("Model #> ") if(modelsel.isnumeric() and int(modelsel) > 0 and int(modelsel) <= len(modellist)): vars.model = modellist[int(modelsel)-1][1] else: print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END)) # Model Lists try: getModelSelection(eval(vars.model)) except Exception as e: if(vars.model == "Return"): getModelSelection(mainmenu) # If custom model was selected, get the filesystem location and store it if(vars.model == "NeoCustom" or vars.model == "GPT2Custom"): print("{0}Please choose the folder where pytorch_model.bin is located:{1}\n".format(colors.CYAN, colors.END)) modpath = fileops.getdirpath(getcwd() + "/models", "Select Model Folder") if(modpath): # Save directory to vars vars.custmodpth = modpath else: # Print error and retry model selection print("{0}Model select cancelled!{1}".format(colors.RED, colors.END)) print("{0}Select an AI model to continue:{1}\n".format(colors.CYAN, colors.END)) getModelSelection(mainmenu) #==================================================================# # Return all keys in tokenizer dictionary containing char #==================================================================# #def gettokenids(char): # keys = [] # for key in vocab_keys: # if(key.find(char) != -1): # keys.append(key) # return keys #==================================================================# # Return Model Name #==================================================================# def getmodelname(): if(args.configname): modelname = args.configname return modelname if(vars.model in ("NeoCustom", "GPT2Custom", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")): modelname = os.path.basename(os.path.normpath(vars.custmodpth)) return modelname else: modelname = vars.model return modelname #==================================================================# # Breakmodel configuration functions #==================================================================# def device_list(n_layers, primary=None, selected=None): device_count = torch.cuda.device_count() if(device_count < 2): primary = None gpu_blocks = breakmodel.gpu_blocks + (device_count - len(breakmodel.gpu_blocks))*[0] print(f"{colors.YELLOW} DEVICE ID | LAYERS | DEVICE NAME{colors.END}") for i in range(device_count): name = torch.cuda.get_device_name(i) if(len(name) > 47): name = "..." + name[-44:] row_color = colors.END sep_color = colors.YELLOW print(f"{row_color}{colors.YELLOW + '->' + row_color if i == selected else ' '} {'(primary)' if i == primary else ' '*9} {i:3} {sep_color}|{row_color} {gpu_blocks[i]:3} {sep_color}|{row_color} {name}{colors.END}") row_color = colors.END sep_color = colors.YELLOW print(f"{row_color} {' '*9} N/A {sep_color}|{row_color} {n_layers:3} {sep_color}|{row_color} (CPU){colors.END}") def device_config(config): global breakmodel, generator import breakmodel n_layers = config.num_layers if hasattr(config, "num_layers") else config.n_layer if(args.breakmodel_gpulayers is not None): try: breakmodel.gpu_blocks = list(map(int, args.breakmodel_gpulayers.split(','))) assert len(breakmodel.gpu_blocks) <= torch.cuda.device_count() s = n_layers for i in range(len(breakmodel.gpu_blocks)): if(breakmodel.gpu_blocks[i] <= -1): breakmodel.gpu_blocks[i] = s break else: s -= breakmodel.gpu_blocks[i] assert sum(breakmodel.gpu_blocks) <= n_layers n_layers -= sum(breakmodel.gpu_blocks) except: print("WARNING: --breakmodel_gpulayers is malformatted. Please use the --help option to see correct usage of --breakmodel_gpulayers. Defaulting to all layers on device 0.", file=sys.stderr) breakmodel.gpu_blocks = [n_layers] n_layers = 0 elif(args.breakmodel_layers is not None): breakmodel.gpu_blocks = [n_layers - max(0, min(n_layers, args.breakmodel_layers))] n_layers -= sum(breakmodel.gpu_blocks) elif(args.model is not None): print("Breakmodel not specified, assuming GPU 0") breakmodel.gpu_blocks = [n_layers] n_layers = 0 else: device_count = torch.cuda.device_count() if(device_count > 1): print(colors.CYAN + "\nPlease select one of your GPUs to be your primary GPU.") print("VRAM usage in your primary GPU will be higher than for your other ones.") print("It is recommended you make your fastest GPU your primary GPU.") device_list(n_layers) while(True): primaryselect = input("device ID> ") if(primaryselect.isnumeric() and 0 <= int(primaryselect) < device_count): breakmodel.primary_device = int(primaryselect) break else: print(f"{colors.RED}Please enter an integer between 0 and {device_count-1}.{colors.END}") else: breakmodel.primary_device = 0 print(colors.PURPLE + "\nIf you don't have enough VRAM to run the model on a single GPU") print("you can split the model between your CPU and your GPU(s), or between") print("multiple GPUs if you have more than one.") print("By putting more 'layers' on a GPU or CPU, more computations will be") print("done on that device and more VRAM or RAM will be required on that device") print("(roughly proportional to number of layers).") print("It should be noted that GPUs are orders of magnitude faster than the CPU.") print(f"This model has{colors.YELLOW} {n_layers} {colors.PURPLE}layers.{colors.END}\n") for i in range(device_count): device_list(n_layers, primary=breakmodel.primary_device, selected=i) print(f"{colors.CYAN}\nHow many of the remaining{colors.YELLOW} {n_layers} {colors.CYAN}layers would you like to put into device {i}?\nYou can also enter -1 to allocate all remaining layers to this device.{colors.END}\n") while(True): layerselect = input("# of layers> ") if((layerselect.isnumeric() or layerselect.strip() == '-1') and -1 <= int(layerselect) <= n_layers): layerselect = int(layerselect) layerselect = n_layers if layerselect == -1 else layerselect breakmodel.gpu_blocks.append(layerselect) n_layers -= layerselect break else: print(f"{colors.RED}Please enter an integer between -1 and {n_layers}.{colors.END}") if(n_layers == 0): break print(colors.PURPLE + "\nFinal device configuration:") device_list(n_layers) # If all layers are on the same device, use the old GPU generation mode while(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] == 0): breakmodel.gpu_blocks.pop() if(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] in (-1, config.num_layers if hasattr(config, "num_layers") else config.n_layer)): vars.breakmodel = False vars.usegpu = True vars.gpu_device = len(breakmodel.gpu_blocks)-1 return if(not breakmodel.gpu_blocks): print("Nothing assigned to a GPU, reverting to CPU only mode") vars.breakmodel = False vars.usegpu = False return def move_model_to_devices(model): global generator if(not vars.breakmodel): if(vars.usegpu): model = model.half().to(vars.gpu_device) else: model = model.to('cpu').float() generator = model.generate return model.half() gc.collect() if(hasattr(model, "transformer")): model.transformer.wte.to(breakmodel.primary_device) model.transformer.ln_f.to(breakmodel.primary_device) if(hasattr(model, 'lm_head')): model.lm_head.to(breakmodel.primary_device) if(hasattr(model.transformer, 'wpe')): model.transformer.wpe.to(breakmodel.primary_device) else: model.model.embed_tokens.to(breakmodel.primary_device) model.model.layer_norm.to(breakmodel.primary_device) model.lm_head.to(breakmodel.primary_device) model.model.embed_positions.to(breakmodel.primary_device) gc.collect() GPTNeoModel.forward = breakmodel.new_forward_neo if("GPTJModel" in globals()): GPTJModel.forward = breakmodel.new_forward_neo # type: ignore if("XGLMModel" in globals()): XGLMModel.forward = breakmodel.new_forward_xglm # type: ignore generator = model.generate if(hasattr(model, "transformer")): breakmodel.move_hidden_layers(model.transformer) else: breakmodel.move_hidden_layers(model.model, model.model.layers) #==================================================================# # Allow the models to override some settings #==================================================================# def loadmodelsettings(): try: js = json.loads(str(model_config).partition(' ')[2]) except Exception as e: try: try: js = json.load(open(vars.custmodpth + "/config.json", "r")) except Exception as e: js = json.load(open(vars.custmodpth.replace('/', '_') + "/config.json", "r")) except Exception as e: js = {} if vars.model_type == "xglm" or js.get("compat", "j") == "fairseq_lm": vars.newlinemode = "s" # Default to newline mode if using XGLM vars.modelconfig = js if("badwordsids" in js): vars.badwordsids = js["badwordsids"] if("nobreakmodel" in js): vars.nobreakmodel = js["nobreakmodel"] if("temp" in js): vars.temp = js["temp"] if("top_p" in js): vars.top_p = js["top_p"] if("top_k" in js): vars.top_k = js["top_k"] if("tfs" in js): vars.tfs = js["tfs"] if("typical" in js): vars.typical = js["typical"] if("rep_pen" in js): vars.rep_pen = js["rep_pen"] if("rep_pen_slope" in js): vars.rep_pen_slope = js["rep_pen_slope"] if("rep_pen_range" in js): vars.rep_pen_range = js["rep_pen_range"] if("adventure" in js): vars.adventure = js["adventure"] if("chatmode" in js): vars.chatmode = js["chatmode"] if("dynamicscan" in js): vars.dynamicscan = js["dynamicscan"] if("formatoptns" in js): vars.formatoptns = js["formatoptns"] if("welcome" in js): vars.welcome = js["welcome"] if("newlinemode" in js): vars.newlinemode = js["newlinemode"] if("antemplate" in js): vars.setauthornotetemplate = js["antemplate"] if(not vars.gamestarted): vars.authornotetemplate = vars.setauthornotetemplate #==================================================================# # Take settings from vars and write them to client settings file #==================================================================# def savesettings(): # Build json to write js = {} js["apikey"] = vars.apikey js["andepth"] = vars.andepth js["temp"] = vars.temp js["top_p"] = vars.top_p js["top_k"] = vars.top_k js["tfs"] = vars.tfs js["typical"] = vars.typical js["rep_pen"] = vars.rep_pen js["rep_pen_slope"] = vars.rep_pen_slope js["rep_pen_range"] = vars.rep_pen_range js["genamt"] = vars.genamt js["max_length"] = vars.max_length js["ikgen"] = vars.ikgen js["formatoptns"] = vars.formatoptns js["numseqs"] = vars.numseqs js["widepth"] = vars.widepth js["useprompt"] = vars.useprompt js["adventure"] = vars.adventure js["chatmode"] = vars.chatmode js["chatname"] = vars.chatname js["dynamicscan"] = vars.dynamicscan js["nopromptgen"] = vars.nopromptgen js["rngpersist"] = vars.rngpersist js["nogenmod"] = vars.nogenmod js["autosave"] = vars.autosave js["welcome"] = vars.welcome js["newlinemode"] = vars.newlinemode js["antemplate"] = vars.setauthornotetemplate js["userscripts"] = vars.userscripts js["corescript"] = vars.corescript js["softprompt"] = vars.spfilename # Write it if not os.path.exists('settings'): os.mkdir('settings') file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w") try: file.write(json.dumps(js, indent=3)) finally: file.close() #==================================================================# # Don't save settings unless 2 seconds have passed without modification #==================================================================# @debounce(2) def settingschanged(): print("{0}Saving settings!{1}".format(colors.GREEN, colors.END)) savesettings() #==================================================================# # Read settings from client file JSON and send to vars #==================================================================# def loadsettings(): if(path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")): # Read file contents into JSON object file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r") js = json.load(file) # Copy file contents to vars if("apikey" in js): vars.apikey = js["apikey"] if("andepth" in js): vars.andepth = js["andepth"] if("temp" in js): vars.temp = js["temp"] if("top_p" in js): vars.top_p = js["top_p"] if("top_k" in js): vars.top_k = js["top_k"] if("tfs" in js): vars.tfs = js["tfs"] if("typical" in js): vars.typical = js["typical"] if("rep_pen" in js): vars.rep_pen = js["rep_pen"] if("rep_pen_slope" in js): vars.rep_pen_slope = js["rep_pen_slope"] if("rep_pen_range" in js): vars.rep_pen_range = js["rep_pen_range"] if("genamt" in js): vars.genamt = js["genamt"] if("max_length" in js): vars.max_length = js["max_length"] if("ikgen" in js): vars.ikgen = js["ikgen"] if("formatoptns" in js): vars.formatoptns = js["formatoptns"] if("numseqs" in js): vars.numseqs = js["numseqs"] if("widepth" in js): vars.widepth = js["widepth"] if("useprompt" in js): vars.useprompt = js["useprompt"] if("adventure" in js): vars.adventure = js["adventure"] if("chatmode" in js): vars.chatmode = js["chatmode"] if("chatname" in js): vars.chatname = js["chatname"] if("dynamicscan" in js): vars.dynamicscan = js["dynamicscan"] if("nopromptgen" in js): vars.nopromptgen = js["nopromptgen"] if("rngpersist" in js): vars.rngpersist = js["rngpersist"] if("nogenmod" in js): vars.nogenmod = js["nogenmod"] if("autosave" in js): vars.autosave = js["autosave"] if("newlinemode" in js): vars.newlinemode = js["newlinemode"] if("welcome" in js): vars.welcome = js["welcome"] if("antemplate" in js): vars.setauthornotetemplate = js["antemplate"] if(not vars.gamestarted): vars.authornotetemplate = vars.setauthornotetemplate if("userscripts" in js): vars.userscripts = [] for userscript in js["userscripts"]: if type(userscript) is not str: continue userscript = userscript.strip() if len(userscript) != 0 and all(q not in userscript for q in ("..", ":")) and all(userscript[0] not in q for q in ("/", "\\")) and os.path.exists(fileops.uspath(userscript)): vars.userscripts.append(userscript) if("corescript" in js and type(js["corescript"]) is str and all(q not in js["corescript"] for q in ("..", ":")) and all(js["corescript"][0] not in q for q in ("/", "\\"))): vars.corescript = js["corescript"] else: vars.corescript = "default.lua" file.close() #==================================================================# # Load a soft prompt from a file #==================================================================# def spRequest(filename): vars.spfilename = "" settingschanged() if(len(filename) == 0): vars.sp = None vars.sp_length = 0 return global np if 'np' not in globals(): import numpy as np z, version, shape, fortran_order, dtype = fileops.checksp(filename, vars.modeldim) assert isinstance(z, zipfile.ZipFile) with z.open('meta.json') as f: vars.spmeta = json.load(f) z.close() with np.load(fileops.sppath(filename), allow_pickle=False) as f: tensor = f['tensor.npy'] # If the tensor is in bfloat16 format, convert it to float32 if(tensor.dtype == 'V2'): tensor.dtype = np.uint16 tensor = np.uint32(tensor) << 16 tensor.dtype = np.float32 if(tensor.dtype != np.float16): tensor = np.float32(tensor) assert not np.isinf(tensor).any() and not np.isnan(tensor).any() vars.sp_length = tensor.shape[-2] vars.spmeta["n_tokens"] = vars.sp_length if(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")): rows = tensor.shape[0] padding_amount = tpu_mtj_backend.params["seq"] - (tpu_mtj_backend.params["seq"] % -tpu_mtj_backend.params["cores_per_replica"]) - rows tensor = np.pad(tensor, ((0, padding_amount), (0, 0))) tensor = tensor.reshape( tpu_mtj_backend.params["cores_per_replica"], -1, tpu_mtj_backend.params["d_model"], ) vars.sp = tpu_mtj_backend.shard_xmap(np.float32(tensor)) else: vars.sp = torch.from_numpy(tensor) vars.spfilename = filename settingschanged() #==================================================================# # Startup #==================================================================# # Parsing Parameters parser = argparse.ArgumentParser(description="KoboldAI Server") parser.add_argument("--remote", action='store_true', help="Optimizes KoboldAI for Remote Play") parser.add_argument("--ngrok", action='store_true', help="Optimizes KoboldAI for Remote Play using Ngrok") parser.add_argument("--host", action='store_true', help="Optimizes KoboldAI for Remote Play without using a proxy service") parser.add_argument("--model", help="Specify the Model Type to skip the Menu") parser.add_argument("--path", help="Specify the Path for local models (For model NeoCustom or GPT2Custom)") parser.add_argument("--cpu", action='store_true', help="By default unattended launches are on the GPU use this option to force CPU usage.") parser.add_argument("--breakmodel", action='store_true', help=argparse.SUPPRESS) parser.add_argument("--breakmodel_layers", type=int, help=argparse.SUPPRESS) parser.add_argument("--breakmodel_gpulayers", type=str, help="If using a model that supports hybrid generation, this is a comma-separated list that specifies how many layers to put on each GPU device. For example to put 8 layers on device 0, 9 layers on device 1 and 11 layers on device 2, use --beakmodel_gpulayers 8,9,11") parser.add_argument("--override_delete", action='store_true', help="Deleting stories from inside the browser is disabled if you are using --remote and enabled otherwise. Using this option will instead allow deleting stories if using --remote and prevent deleting stories otherwise.") parser.add_argument("--override_rename", action='store_true', help="Renaming stories from inside the browser is disabled if you are using --remote and enabled otherwise. Using this option will instead allow renaming stories if using --remote and prevent renaming stories otherwise.") parser.add_argument("--configname", help="Force a fixed configuration name to aid with config management.") parser.add_argument("--colab", action='store_true', help="Optimize for Google Colab.") parser.add_argument("--nobreakmodel", action='store_true', help="Disables Breakmodel support completely.") parser.add_argument("--unblock", action='store_true', default=False, help="Unblocks the KoboldAI port to be accessible from other machines without optimizing for remote play (It is recommended to use --host instead)") parser.add_argument("--quiet", action='store_true', default=False, help="If present will suppress any story related text from showing on the console") parser.add_argument("--lowmem", action='store_true', help="Extra Low Memory loading for the GPU, slower but memory does not peak to twice the usage") parser.add_argument("--savemodel", action='store_true', help="Saves the model to the models folder even if --colab is used (Allows you to save models to Google Drive)") args: argparse.Namespace = None if(os.environ.get("KOBOLDAI_ARGS") is not None): import shlex args = parser.parse_args(shlex.split(os.environ["KOBOLDAI_ARGS"])) else: args = parser.parse_args() vars.model = args.model; if args.colab: args.remote = True; args.override_rename = True; args.override_delete = True; args.nobreakmodel = True; args.quiet = True; args.lowmem = True; if args.quiet: vars.quiet = True if args.nobreakmodel: vars.nobreakmodel = True; if args.remote: vars.host = True; if args.ngrok: vars.host = True; if args.host: vars.host = True; if args.cpu: vars.use_colab_tpu = False vars.smandelete = vars.host == args.override_delete vars.smanrename = vars.host == args.override_rename # Select a model to run if args.model: print("Welcome to KoboldAI!\nYou have selected the following Model:", vars.model) if args.path: print("You have selected the following path for your Model :", args.path) vars.custmodpth = args.path; vars.colaburl = args.path + "/request"; # Lets just use the same parameter to keep it simple else: print("{0}Welcome to the KoboldAI Server!\nListed RAM is the optimal VRAM and CPU ram can be up to twice the amount.\nMost models can run at less VRAM with reduced max tokens or less layers on the GPU.\nSelect an AI model to continue:{1}\n".format(colors.CYAN, colors.END)) getModelSelection(mainmenu) # If transformers model was selected & GPU available, ask to use CPU or GPU if(vars.model not in ["InferKit", "Colab", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]): vars.allowsp = True # Test for GPU support import torch # Make model path the same as the model name to make this consistent with the other loading method if it isn't a known model type # This code is not just a workaround for below, it is also used to make the behavior consistent with other loading methods - Henk717 if(not vars.model in ["NeoCustom", "GPT2Custom"]): vars.custmodpth = vars.model elif(vars.model == "NeoCustom"): vars.model = os.path.basename(os.path.normpath(vars.custmodpth)) # Get the model_type from the config or assume a model type if it isn't present from transformers import AutoConfig if(os.path.isdir(vars.custmodpth.replace('/', '_'))): try: model_config = AutoConfig.from_pretrained(vars.custmodpth.replace('/', '_'), cache_dir="cache/") vars.model_type = model_config.model_type except ValueError as e: vars.model_type = "not_found" elif(os.path.isdir("models/{}".format(vars.custmodpth.replace('/', '_')))): try: model_config = AutoConfig.from_pretrained("models/{}".format(vars.custmodpth.replace('/', '_')), cache_dir="cache/") vars.model_type = model_config.model_type except ValueError as e: vars.model_type = "not_found" else: try: model_config = AutoConfig.from_pretrained(vars.custmodpth, cache_dir="cache/") vars.model_type = model_config.model_type except ValueError as e: vars.model_type = "not_found" if(vars.model_type == "not_found" and vars.model == "NeoCustom"): vars.model_type = "gpt_neo" elif(vars.model_type == "not_found" and vars.model == "GPT2Custom"): vars.model_type = "gpt2" elif(vars.model_type == "not_found"): print("WARNING: No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)") vars.model_type = "gpt_neo" if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]): loadmodelsettings() loadsettings() print("{0}Looking for GPU support...{1}".format(colors.PURPLE, colors.END), end="") vars.hascuda = torch.cuda.is_available() vars.bmsupported = vars.model_type in ("gpt_neo", "gptj", "xglm") and not vars.nobreakmodel if(args.breakmodel is not None and args.breakmodel): print("WARNING: --breakmodel is no longer supported. Breakmodel mode is now automatically enabled when --breakmodel_gpulayers is used (see --help for details).", file=sys.stderr) if(args.breakmodel_layers is not None): print("WARNING: --breakmodel_layers is deprecated. Use --breakmodel_gpulayers instead (see --help for details).", file=sys.stderr) if(args.model and vars.bmsupported and not args.breakmodel_gpulayers and not args.breakmodel_layers): print("WARNING: Model launched without the --breakmodel_gpulayers argument, defaulting to GPU only mode.", file=sys.stderr) vars.bmsupported = False if(not vars.bmsupported and (args.breakmodel_gpulayers is not None or args.breakmodel_layers is not None)): print("WARNING: This model does not support hybrid generation. --breakmodel_gpulayers will be ignored.", file=sys.stderr) if(vars.hascuda): print("{0}FOUND!{1}".format(colors.GREEN, colors.END)) else: print("{0}NOT FOUND!{1}".format(colors.YELLOW, colors.END)) if args.model: if(vars.hascuda): genselected = True vars.usegpu = True vars.breakmodel = False if(vars.bmsupported): vars.usegpu = False vars.breakmodel = True if(args.cpu): vars.usegpu = False vars.breakmodel = False elif(vars.hascuda): if(vars.bmsupported): genselected = True vars.usegpu = False vars.breakmodel = True else: print(" 1 - GPU\n 2 - CPU\n") genselected = False else: genselected = False if(vars.hascuda): while(genselected == False): genselect = input("Mode> ") if(genselect == ""): vars.breakmodel = False vars.usegpu = True genselected = True elif(genselect.isnumeric() and int(genselect) == 1): if(vars.bmsupported): vars.breakmodel = True vars.usegpu = False genselected = True else: vars.breakmodel = False vars.usegpu = True genselected = True elif(genselect.isnumeric() and int(genselect) == 2): vars.breakmodel = False vars.usegpu = False genselected = True else: print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END)) # Ask for API key if InferKit was selected if(vars.model == "InferKit"): if(not path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")): # If the client settings file doesn't exist, create it print("{0}Please enter your InferKit API key:{1}\n".format(colors.CYAN, colors.END)) vars.apikey = input("Key> ") # Write API key to file os.makedirs('settings', exist_ok=True) file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w") try: js = {"apikey": vars.apikey} file.write(json.dumps(js, indent=3)) finally: file.close() else: # Otherwise open it up file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r") # Check if API key exists js = json.load(file) if("apikey" in js and js["apikey"] != ""): # API key exists, grab it and close the file vars.apikey = js["apikey"] file.close() else: # Get API key, add it to settings object, and write it to disk print("{0}Please enter your InferKit API key:{1}\n".format(colors.CYAN, colors.END)) vars.apikey = input("Key> ") js["apikey"] = vars.apikey # Write API key to file file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w") try: file.write(json.dumps(js, indent=3)) finally: file.close() # Swap OAI Server if GooseAI was selected if(vars.model == "GooseAI"): vars.oaiengines = "https://api.goose.ai/v1/engines" vars.model = "OAI" args.configname = "GooseAI" # Ask for API key if OpenAI was selected if(vars.model == "OAI"): if not args.configname: args.configname = "OAI" if(not path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")): # If the client settings file doesn't exist, create it print("{0}Please enter your API key:{1}\n".format(colors.CYAN, colors.END)) vars.oaiapikey = input("Key> ") # Write API key to file os.makedirs('settings', exist_ok=True) file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w") try: js = {"oaiapikey": vars.oaiapikey} file.write(json.dumps(js, indent=3)) finally: file.close() else: # Otherwise open it up file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r") # Check if API key exists js = json.load(file) if("oaiapikey" in js and js["oaiapikey"] != ""): # API key exists, grab it and close the file vars.oaiapikey = js["oaiapikey"] file.close() else: # Get API key, add it to settings object, and write it to disk print("{0}Please enter your API key:{1}\n".format(colors.CYAN, colors.END)) vars.oaiapikey = input("Key> ") js["oaiapikey"] = vars.oaiapikey # Write API key to file file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "w") try: file.write(json.dumps(js, indent=3)) finally: file.close() if vars.custmodpth: vars.oaiurl = vars.oaiengines + "/" + vars.custmodpth + "/completions" args.configname = args.configname + "/" + vars.custmodpth engselected = True else: # Get list of models from OAI print("{0}Retrieving engine list...{1}".format(colors.PURPLE, colors.END), end="") req = requests.get( vars.oaiengines, headers = { 'Authorization': 'Bearer '+vars.oaiapikey } ) if(req.status_code == 200): print("{0}OK!{1}".format(colors.GREEN, colors.END)) print("{0}Please select an engine to use:{1}\n".format(colors.CYAN, colors.END)) engines = req.json()["data"] # Print list of engines i = 0 for en in engines: print(" {0} - {1} ({2})".format(i, en["id"], "\033[92mready\033[0m" if en["ready"] == True else "\033[91mnot ready\033[0m")) i += 1 # Get engine to use print("") engselected = False while(engselected == False): engine = input("Engine #> ") if(engine.isnumeric() and int(engine) < len(engines)): vars.oaiurl = vars.oaiengines + "/{0}/completions".format(engines[int(engine)]["id"]) args.configname = args.configname + "/" + engines[int(engine)]["id"] engselected = True else: print("{0}Please enter a valid selection.{1}".format(colors.RED, colors.END)) else: # Something went wrong, print the message and quit since we can't initialize an engine print("{0}ERROR!{1}".format(colors.RED, colors.END)) print(req.json()) quit() # Ask for ngrok url if Google Colab was selected if(vars.model == "Colab"): if(vars.colaburl == ""): print("{0}NOTE: For the modern KoboldAI Colab's you open the links directly in your browser.\nThis option is only for the KoboldAI Server API, not all features are supported in this mode.\n".format(colors.YELLOW, colors.END)) print("{0}Enter the URL of the server (For example a trycloudflare link):{1}\n".format(colors.CYAN, colors.END)) vars.colaburl = input("URL> ") + "/request" if(vars.model == "ReadOnly"): vars.noai = True # Set logging level to reduce chatter from Flask import logging log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) # Start flask & SocketIO print("{0}Initializing Flask... {1}".format(colors.PURPLE, colors.END), end="") from flask import Flask, render_template, Response, request, copy_current_request_context from flask_socketio import SocketIO, emit app = Flask(__name__, root_path=os.getcwd()) app.config['SECRET KEY'] = 'secret!' socketio = SocketIO(app, async_method="eventlet") print("{0}OK!{1}".format(colors.GREEN, colors.END)) # Start transformers and create pipeline if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "GooseAI" , "ReadOnly", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]): if(not vars.noai): print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END)) from transformers import StoppingCriteria, GPT2TokenizerFast, GPT2LMHeadModel, GPTNeoForCausalLM, GPTNeoModel, AutoModelForCausalLM, AutoTokenizer for m in ("GPTJModel", "XGLMModel"): try: globals()[m] = getattr(__import__("transformers"), m) except: pass import transformers.generation_utils from transformers import __version__ as transformers_version # Lazy loader import torch_lazy_loader def get_lazy_load_callback(n_layers, convert_to_float16=True): if not vars.lazy_load: return from tqdm.auto import tqdm if "breakmodel" in globals(): gpu_blocks = breakmodel.gpu_blocks ram_blocks = ram_blocks = n_layers - sum(gpu_blocks) cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks)) else: ram_blocks = gpu_blocks = cumulative_gpu_blocks = None def lazy_load_callback(model_dict, f, **_): device_map = {} for _key, spec in lazy_load_spec.get("layer_weights", {}).items(): for layer in range(n_layers): key = _key.format(layer=layer) if key not in model_dict: continue device = vars.gpu_device if vars.hascuda and vars.usegpu else "cpu" if not vars.hascuda or not vars.breakmodel or layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks) device_map[key] = device for key, value in model_dict.items(): if isinstance(value, torch_lazy_loader.LazyTensor) and key not in device_map: device_map[key] = vars.gpu_device if vars.hascuda and vars.usegpu else "cpu" with zipfile.ZipFile(f, "r") as z: try: last_storage_key = None f = None for key in tqdm(sorted(device_map.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset)), desc="Loading model tensors"): storage_key = model_dict[key].key if storage_key != last_storage_key: last_storage_key = storage_key if isinstance(f, zipfile.ZipExtFile): f.close() f = z.open(f"archive/data/{storage_key}") current_offset = f.tell() if current_offset != model_dict[key].seek_offset: f.seek(model_dict[key].seek_offset - current_offset, 1) device = device_map[key] #print(f"Transferring <{key}> to {'(CPU)' if device == 'cpu' else '[device ' + str(device) + ']'} ... ", end="", flush=True) model_dict[key] = model_dict[key].materialize(f, map_location="cpu") if convert_to_float16 and vars.hascuda and (vars.breakmodel or vars.usegpu) and model_dict[key].dtype is torch.float32: model_dict[key] = model_dict[key].to(torch.float16) if not vars.usegpu and not vars.breakmodel and model_dict[key].dtype is torch.float16: model_dict[key] = model_dict[key].to(torch.float32) model_dict[key] = model_dict[key].to(device) #print("OK", flush=True) finally: if isinstance(f, zipfile.ZipExtFile): f.close() return lazy_load_callback lazy_load_config_path = os.path.join("maps", vars.model_type + ".json") if(vars.lazy_load and "model_config" in globals() and os.path.isfile(lazy_load_config_path)): with open(lazy_load_config_path) as f: lazy_load_spec = json.load(f) else: vars.lazy_load = False # Some versions of transformers 4.17.0.dev0 are affected by # https://github.com/huggingface/transformers/issues/15736 # This is a workaround for those versions of transformers. if(transformers_version == "4.17.0.dev0"): try: from transformers.models.xglm.modeling_xglm import XGLMSinusoidalPositionalEmbedding except ImportError: pass else: @torch.no_grad() def new_forward(self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0): bsz, seq_len = inputs_embeds.size()[:-1] input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( past_key_values_length + self.padding_idx + 1, past_key_values_length + sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ).unsqueeze(0).expand(input_shape).contiguous() max_pos = self.padding_idx + 1 + seq_len + past_key_values_length if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach() XGLMSinusoidalPositionalEmbedding.forward = new_forward # Patch transformers to use our soft prompt def patch_causallm(cls): old_forward = cls.forward def new_causallm_forward(self, *args, **kwargs): input_ids = kwargs.get('input_ids').to(self.device) assert input_ids is not None kwargs['input_ids'] = None if(vars.sp is not None): shifted_input_ids = input_ids - self.config.vocab_size input_ids.clamp_(max=self.config.vocab_size-1) if(hasattr(self, "transformer")): inputs_embeds = self.transformer.wte(input_ids) else: inputs_embeds = self.model.embed_tokens(input_ids) if(vars.sp is not None): vars.sp = vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device) inputs_embeds = torch.where( (shifted_input_ids >= 0)[..., None], vars.sp[shifted_input_ids.clamp(min=0)], inputs_embeds, ) if(not hasattr(self, "transformer")): inputs_embeds *= self.model.embed_scale kwargs['inputs_embeds'] = inputs_embeds return old_forward(self, *args, **kwargs) cls.forward = new_causallm_forward for cls in (GPT2LMHeadModel, GPTNeoForCausalLM): patch_causallm(cls) for c in ("GPTJForCausalLM", "XGLMForCausalLM"): try: patch_causallm(getattr(__import__("transformers"), c)) except: pass # Patch transformers to use our custom logit warpers from transformers import LogitsProcessorList, LogitsWarper, LogitsProcessor, TopKLogitsWarper, TopPLogitsWarper, TemperatureLogitsWarper, RepetitionPenaltyLogitsProcessor from warpers import AdvancedRepetitionPenaltyLogitsProcessor, TailFreeLogitsWarper, TypicalLogitsWarper def dynamic_processor_wrap(cls, field_name, var_name, cond=None): old_call = cls.__call__ def new_call(self, *args, **kwargs): if(not isinstance(field_name, str) and isinstance(field_name, Iterable)): conds = [] for f, v in zip(field_name, var_name): conds.append(getattr(vars, v)) setattr(self, f, conds[-1]) else: conds = getattr(vars, var_name) setattr(self, field_name, conds) assert len(args) == 2 if(cond is None or cond(conds)): return old_call(self, *args, **kwargs) return args[1] cls.__call__ = new_call dynamic_processor_wrap(AdvancedRepetitionPenaltyLogitsProcessor, ("penalty", "penalty_slope", "penalty_range"), ("rep_pen", "rep_pen_slope", "rep_pen_range"), cond=lambda x: x[0] != 1.0) dynamic_processor_wrap(TopKLogitsWarper, "top_k", "top_k", cond=lambda x: x > 0) dynamic_processor_wrap(TopPLogitsWarper, "top_p", "top_p", cond=lambda x: x < 1.0) dynamic_processor_wrap(TailFreeLogitsWarper, "tfs", "tfs", cond=lambda x: x < 1.0) dynamic_processor_wrap(TypicalLogitsWarper, "typical", "typical", cond=lambda x: x < 1.0) dynamic_processor_wrap(TemperatureLogitsWarper, "temperature", "temp", cond=lambda x: x != 1.0) RepetitionPenaltyLogitsProcessor.__init__ = AdvancedRepetitionPenaltyLogitsProcessor.__init__ RepetitionPenaltyLogitsProcessor.__call__ = AdvancedRepetitionPenaltyLogitsProcessor.__call__ class LuaLogitsProcessor(LogitsProcessor): def __init__(self): pass def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: assert scores.ndim == 2 assert input_ids.ndim == 2 self.regeneration_required = False self.halt = False scores_shape = scores.shape scores_list = scores.tolist() vars.lua_koboldbridge.logits = vars.lua_state.table() for r, row in enumerate(scores_list): vars.lua_koboldbridge.logits[r+1] = vars.lua_state.table(*row) vars.lua_koboldbridge.vocab_size = scores_shape[-1] execute_genmod() scores = torch.tensor( tuple(tuple(row.values()) for row in vars.lua_koboldbridge.logits.values()), device=scores.device, dtype=scores.dtype, ) assert scores.shape == scores_shape return scores def new_get_logits_processor(*args, **kwargs) -> LogitsProcessorList: processors = new_get_logits_processor.old_get_logits_processor(*args, **kwargs) processors.insert(0, LuaLogitsProcessor()) return processors new_get_logits_processor.old_get_logits_processor = transformers.generation_utils.GenerationMixin._get_logits_processor transformers.generation_utils.GenerationMixin._get_logits_processor = new_get_logits_processor def new_get_logits_warper(beams: int = 1,) -> LogitsProcessorList: warper_list = LogitsProcessorList() warper_list.append(TopKLogitsWarper(top_k=1, min_tokens_to_keep=1 + (beams > 1))) warper_list.append(TopPLogitsWarper(top_p=0.5, min_tokens_to_keep=1 + (beams > 1))) warper_list.append(TailFreeLogitsWarper(tfs=0.5, min_tokens_to_keep=1 + (beams > 1))) warper_list.append(TypicalLogitsWarper(typical=0.5, min_tokens_to_keep=1 + (beams > 1))) warper_list.append(TemperatureLogitsWarper(temperature=0.5)) return warper_list def new_sample(self, *args, **kwargs): assert kwargs.pop("logits_warper", None) is not None kwargs["logits_warper"] = new_get_logits_warper( beams=1, ) if(vars.newlinemode == "s"): kwargs["eos_token_id"] = -1 kwargs.setdefault("pad_token_id", 2) return new_sample.old_sample(self, *args, **kwargs) new_sample.old_sample = transformers.generation_utils.GenerationMixin.sample transformers.generation_utils.GenerationMixin.sample = new_sample # Allow bad words filter to ban <|endoftext|> token import transformers.generation_logits_process def new_init(self, bad_words_ids: List[List[int]], eos_token_id: int): return new_init.old_init(self, bad_words_ids, -1) new_init.old_init = transformers.generation_logits_process.NoBadWordsLogitsProcessor.__init__ transformers.generation_logits_process.NoBadWordsLogitsProcessor.__init__ = new_init # Sets up dynamic world info scanner class DynamicWorldInfoScanCriteria(StoppingCriteria): def __init__( self, tokenizer, excluded_world_info: List[Set], ): self.regeneration_required = False self.halt = False self.tokenizer = tokenizer self.excluded_world_info = excluded_world_info def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs, ) -> bool: vars.generated_tkns += 1 if(vars.lua_koboldbridge.generated_cols and vars.generated_tkns != vars.lua_koboldbridge.generated_cols): raise RuntimeError(f"Inconsistency detected between KoboldAI Python and Lua backends ({vars.generated_tkns} != {vars.lua_koboldbridge.generated_cols})") if(vars.abort or vars.generated_tkns >= vars.genamt): self.regeneration_required = False self.halt = False return True assert input_ids.ndim == 2 assert len(self.excluded_world_info) == input_ids.shape[0] self.regeneration_required = vars.lua_koboldbridge.regeneration_required self.halt = not vars.lua_koboldbridge.generating vars.lua_koboldbridge.regeneration_required = False for i in range(vars.numseqs): vars.lua_koboldbridge.generated[i+1][vars.generated_tkns] = int(input_ids[i, -1].item()) if(not vars.dynamicscan): return self.regeneration_required or self.halt tail = input_ids[..., -vars.generated_tkns:] for i, t in enumerate(tail): decoded = utils.decodenewlines(tokenizer.decode(t)) _, found = checkworldinfo(decoded, force_use_txt=True, actions=vars._actions) found -= self.excluded_world_info[i] if(len(found) != 0): self.regeneration_required = True break return self.regeneration_required or self.halt old_get_stopping_criteria = transformers.generation_utils.GenerationMixin._get_stopping_criteria def new_get_stopping_criteria(self, *args, **kwargs): stopping_criteria = old_get_stopping_criteria(self, *args, **kwargs) global tokenizer self.kai_scanner = DynamicWorldInfoScanCriteria( tokenizer=tokenizer, excluded_world_info=self.kai_scanner_excluded_world_info, ) stopping_criteria.insert(0, self.kai_scanner) return stopping_criteria transformers.generation_utils.GenerationMixin._get_stopping_criteria = new_get_stopping_criteria def get_hidden_size_from_model(model): try: return int(model.transformer.hidden_size) except: try: return int(model.transformer.embed_dim) except: return int(model.lm_head.in_features) def maybe_low_cpu_mem_usage() -> Dict[str, Any]: if(packaging.version.parse(transformers_version) < packaging.version.parse("4.11.0")): print(f"\nWARNING: Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.", file=sys.stderr) return {} return {"low_cpu_mem_usage": True} @contextlib.contextmanager def maybe_use_float16(always_use=False): if(always_use or (vars.hascuda and args.lowmem and (vars.usegpu or vars.breakmodel))): original_dtype = torch.get_default_dtype() torch.set_default_dtype(torch.float16) yield True torch.set_default_dtype(original_dtype) else: yield False # If custom GPT2 model was chosen if(vars.model == "GPT2Custom"): vars.lazy_load = False model_config = open(vars.custmodpth + "/config.json", "r") js = json.load(model_config) with(maybe_use_float16()): model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/") tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, cache_dir="cache/") vars.modeldim = get_hidden_size_from_model(model) # Is CUDA available? If so, use GPU, otherwise fall back to CPU if(vars.hascuda and vars.usegpu): model = model.half().to(vars.gpu_device) generator = model.generate else: model = model.to('cpu').float() generator = model.generate # Use the Generic implementation else: lowmem = maybe_low_cpu_mem_usage() # We must disable low_cpu_mem_usage (by setting lowmem to {}) if # using a GPT-2 model because GPT-2 is not compatible with this # feature yet if(vars.model_type == "gpt2"): lowmem = {} # If we're using torch_lazy_loader, we need to get breakmodel config # early so that it knows where to load the individual model tensors if(vars.lazy_load and vars.hascuda and vars.breakmodel): device_config(model_config) # Download model from Huggingface if it does not exist, otherwise load locally #If we specify a model and it's in the root directory, we need to move it to the models directory (legacy folder structure to new) if os.path.isdir(vars.model.replace('/', '_')): import shutil shutil.move(vars.model.replace('/', '_'), "models/{}".format(vars.model.replace('/', '_'))) print("\n", flush=True) with maybe_use_float16(), torch_lazy_loader.use_lazy_torch_load(enable=vars.lazy_load, callback=get_lazy_load_callback(model_config.num_layers if hasattr(model_config, "num_layers") else model_config.n_layer) if vars.lazy_load else None, dematerialized_modules=True): if(vars.lazy_load): # torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time lowmem = {} if(os.path.isdir(vars.custmodpth)): try: tokenizer = AutoTokenizer.from_pretrained(vars.custmodpth, cache_dir="cache") except Exception as e: try: tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, cache_dir="cache") except Exception as e: tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache") try: model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache", **lowmem) except Exception as e: model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache", **lowmem) elif(os.path.isdir("models/{}".format(vars.model.replace('/', '_')))): try: tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), cache_dir="cache") except Exception as e: try: tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(vars.model.replace('/', '_')), cache_dir="cache") except Exception as e: tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache") try: model = AutoModelForCausalLM.from_pretrained("models/{}".format(vars.model.replace('/', '_')), cache_dir="cache", **lowmem) except Exception as e: model = GPTNeoForCausalLM.from_pretrained("models/{}".format(vars.model.replace('/', '_')), cache_dir="cache", **lowmem) else: try: tokenizer = AutoTokenizer.from_pretrained(vars.model, cache_dir="cache") except Exception as e: try: tokenizer = GPT2TokenizerFast.from_pretrained(vars.model, cache_dir="cache") except Exception as e: tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache") try: model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache", **lowmem) except Exception as e: model = GPTNeoForCausalLM.from_pretrained(vars.model, cache_dir="cache", **lowmem) if not args.colab or args.savemodel: import shutil model = model.half() model.save_pretrained("models/{}".format(vars.model.replace('/', '_'))) tokenizer.save_pretrained("models/{}".format(vars.model.replace('/', '_'))) shutil.rmtree("cache/") if(vars.hascuda): if(vars.usegpu): vars.modeldim = get_hidden_size_from_model(model) model = model.half().to(vars.gpu_device) generator = model.generate elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel) vars.modeldim = get_hidden_size_from_model(model) if(not vars.lazy_load): device_config(model.config) move_model_to_devices(model) else: model = model.to('cpu').float() vars.modeldim = get_hidden_size_from_model(model) generator = model.generate else: model.to('cpu').float() vars.modeldim = get_hidden_size_from_model(model) generator = model.generate # Suppress Author's Note by flagging square brackets (Old implementation) #vocab = tokenizer.get_vocab() #vocab_keys = vocab.keys() #vars.badwords = gettokenids("[") #for key in vars.badwords: # vars.badwordsids.append([vocab[key]]) print("{0}OK! {1} pipeline created!{2}".format(colors.GREEN, vars.model, colors.END)) else: from transformers import GPT2TokenizerFast tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/") else: def tpumtjgetsofttokens(): soft_tokens = None if(vars.sp is None): global np if 'np' not in globals(): import numpy as np tensor = np.zeros((1, tpu_mtj_backend.params["d_model"]), dtype=np.float32) rows = tensor.shape[0] padding_amount = tpu_mtj_backend.params["seq"] - (tpu_mtj_backend.params["seq"] % -tpu_mtj_backend.params["cores_per_replica"]) - rows tensor = np.pad(tensor, ((0, padding_amount), (0, 0))) tensor = tensor.reshape( tpu_mtj_backend.params["cores_per_replica"], -1, tpu_mtj_backend.params["d_model"], ) vars.sp = tpu_mtj_backend.shard_xmap(tensor) soft_tokens = np.arange( tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"], tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"] + vars.sp_length, dtype=np.uint32 ) return soft_tokens def tpumtjgenerate_warper_callback(scores) -> "np.array": scores_shape = scores.shape scores_list = scores.tolist() vars.lua_koboldbridge.logits = vars.lua_state.table() for r, row in enumerate(scores_list): vars.lua_koboldbridge.logits[r+1] = vars.lua_state.table(*row) vars.lua_koboldbridge.vocab_size = scores_shape[-1] execute_genmod() scores = np.array( tuple(tuple(row.values()) for row in vars.lua_koboldbridge.logits.values()), dtype=scores.dtype, ) assert scores.shape == scores_shape return scores def tpumtjgenerate_stopping_callback(generated, n_generated, excluded_world_info) -> Tuple[List[set], bool, bool]: vars.generated_tkns += 1 assert len(excluded_world_info) == len(generated) regeneration_required = vars.lua_koboldbridge.regeneration_required halt = vars.abort or not vars.lua_koboldbridge.generating or vars.generated_tkns >= vars.genamt vars.lua_koboldbridge.regeneration_required = False global past for i in range(vars.numseqs): vars.lua_koboldbridge.generated[i+1][vars.generated_tkns] = int(generated[i, tpu_mtj_backend.params["seq"] + n_generated - 1].item()) if(not vars.dynamicscan or halt): return excluded_world_info, regeneration_required, halt for i, t in enumerate(generated): decoded = utils.decodenewlines(tokenizer.decode(past[i])) + utils.decodenewlines(tokenizer.decode(t[tpu_mtj_backend.params["seq"] : tpu_mtj_backend.params["seq"] + n_generated])) _, found = checkworldinfo(decoded, force_use_txt=True, actions=vars._actions) found -= excluded_world_info[i] if(len(found) != 0): regeneration_required = True break return excluded_world_info, regeneration_required, halt def tpumtjgenerate_compiling_callback() -> None: print(colors.GREEN + "TPU backend compilation triggered" + colors.END) vars.compiling = True def tpumtjgenerate_stopped_compiling_callback() -> None: vars.compiling = False def tpumtjgenerate_settings_callback() -> dict: return { "top_p": float(vars.top_p), "temp": float(vars.temp), "top_k": int(vars.top_k), "tfs": float(vars.tfs), "typical": float(vars.typical), "repetition_penalty": float(vars.rep_pen), "rpslope": float(vars.rep_pen_slope), "rprange": int(vars.rep_pen_range), } # If we're running Colab or OAI, we still need a tokenizer. if(vars.model == "Colab"): from transformers import GPT2TokenizerFast tokenizer = GPT2TokenizerFast.from_pretrained("EleutherAI/gpt-neo-2.7B", cache_dir="cache/") loadsettings() elif(vars.model == "OAI"): from transformers import GPT2TokenizerFast tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/") loadsettings() # Load the TPU backend if requested elif(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")): if(vars.model == "TPUMeshTransformerGPTNeoX"): vars.badwordsids = vars.badwordsids_neox print("{0}Initializing Mesh Transformer JAX, please wait...{1}".format(colors.PURPLE, colors.END)) if vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX") and (not vars.custmodpth or not os.path.isdir(vars.custmodpth)): raise FileNotFoundError(f"The specified model path {repr(vars.custmodpth)} is not the path to a valid folder") import tpu_mtj_backend if(vars.model == "TPUMeshTransformerGPTNeoX"): tpu_mtj_backend.pad_token_id = 1 tpu_mtj_backend.vars = vars tpu_mtj_backend.warper_callback = tpumtjgenerate_warper_callback tpu_mtj_backend.stopping_callback = tpumtjgenerate_stopping_callback tpu_mtj_backend.compiling_callback = tpumtjgenerate_compiling_callback tpu_mtj_backend.stopped_compiling_callback = tpumtjgenerate_stopped_compiling_callback tpu_mtj_backend.settings_callback = tpumtjgenerate_settings_callback vars.allowsp = True loadmodelsettings() loadsettings() tpu_mtj_backend.load_model(vars.custmodpth, hf_checkpoint=vars.model not in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX") and vars.use_colab_tpu, **vars.modelconfig) vars.modeldim = int(tpu_mtj_backend.params["d_model"]) tokenizer = tpu_mtj_backend.tokenizer else: loadsettings() # Set up Flask routes @app.route('/') @app.route('/index') def index(): return render_template('index.html') @app.route('/download') def download(): save_format = request.args.get("format", "json").strip().lower() if(save_format == "plaintext"): txt = vars.prompt + "".join(vars.actions.values()) save = Response(txt) filename = path.basename(vars.savedir) if filename[-5:] == ".json": filename = filename[:-5] save.headers.set('Content-Disposition', 'attachment', filename='%s.txt' % filename) return(save) # Build json to write js = {} js["gamestarted"] = vars.gamestarted js["prompt"] = vars.prompt js["memory"] = vars.memory js["authorsnote"] = vars.authornote js["anotetemplate"] = vars.authornotetemplate js["actions"] = tuple(vars.actions.values()) js["actions_metadata"] = vars.actions_metadata js["worldinfo"] = [] # Extract only the important bits of WI for wi in vars.worldinfo: if(wi["constant"] or wi["key"] != ""): js["worldinfo"].append({ "key": wi["key"], "keysecondary": wi["keysecondary"], "content": wi["content"], "comment": wi["comment"], "folder": wi["folder"], "selective": wi["selective"], "constant": wi["constant"] }) save = Response(json.dumps(js, indent=3)) filename = path.basename(vars.savedir) if filename[-5:] == ".json": filename = filename[:-5] save.headers.set('Content-Disposition', 'attachment', filename='%s.json' % filename) return(save) #============================ LUA API =============================# if(path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")): file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r") js = json.load(file) if("userscripts" in js): vars.userscripts = [] for userscript in js["userscripts"]: if type(userscript) is not str: continue userscript = userscript.strip() if len(userscript) != 0 and all(q not in userscript for q in ("..", ":")) and all(userscript[0] not in q for q in ("/", "\\")) and os.path.exists(fileops.uspath(userscript)): vars.userscripts.append(userscript) if("corescript" in js and type(js["corescript"]) is str and all(q not in js["corescript"] for q in ("..", ":")) and all(js["corescript"][0] not in q for q in ("/", "\\"))): vars.corescript = js["corescript"] else: vars.corescript = "default.lua" file.close() def lua_log_format_name(name): return f"[{name}]" if type(name) is str else "CORE" _bridged = {} F = TypeVar("F", bound=Callable) def bridged_kwarg(name=None): def _bridged_kwarg(f: F): _bridged[name if name is not None else f.__name__[4:] if f.__name__[:4] == "lua_" else f.__name__] = f return f return _bridged_kwarg #==================================================================# # Event triggered when a userscript is loaded #==================================================================# @bridged_kwarg() def load_callback(filename, modulename): print(colors.GREEN + f"Loading Userscript [{modulename}] <{filename}>" + colors.END) #==================================================================# # Load all Lua scripts #==================================================================# def load_lua_scripts(): print(colors.GREEN + "Loading Core Script" + colors.END) filenames = [] modulenames = [] descriptions = [] lst = fileops.getusfiles(long_desc=True) filenames_dict = {ob["filename"]: i for i, ob in enumerate(lst)} for filename in vars.userscripts: if filename in filenames_dict: i = filenames_dict[filename] filenames.append(filename) modulenames.append(lst[i]["modulename"]) descriptions.append(lst[i]["description"]) vars.has_genmod = False try: vars.lua_koboldbridge.obliterate_multiverse() tpool.execute(vars.lua_koboldbridge.load_corescript, vars.corescript) vars.has_genmod = tpool.execute(vars.lua_koboldbridge.load_userscripts, filenames, modulenames, descriptions) vars.lua_running = True except lupa.LuaError as e: try: vars.lua_koboldbridge.obliterate_multiverse() except: pass vars.lua_running = False if(vars.serverstarted): emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True) sendUSStatItems() print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr) print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr) print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr) if(vars.serverstarted): set_aibusy(0) #==================================================================# # Print message that originates from the userscript with the given name #==================================================================# @bridged_kwarg() def lua_print(msg): if(vars.lua_logname != vars.lua_koboldbridge.logging_name): vars.lua_logname = vars.lua_koboldbridge.logging_name print(colors.BLUE + lua_log_format_name(vars.lua_logname) + ":" + colors.END, file=sys.stderr) print(colors.PURPLE + msg.replace("\033", "") + colors.END) #==================================================================# # Print warning that originates from the userscript with the given name #==================================================================# @bridged_kwarg() def lua_warn(msg): if(vars.lua_logname != vars.lua_koboldbridge.logging_name): vars.lua_logname = vars.lua_koboldbridge.logging_name print(colors.BLUE + lua_log_format_name(vars.lua_logname) + ":" + colors.END, file=sys.stderr) print(colors.YELLOW + msg.replace("\033", "") + colors.END) #==================================================================# # Decode tokens into a string using current tokenizer #==================================================================# @bridged_kwarg() def lua_decode(tokens): tokens = list(tokens.values()) assert type(tokens) is list if("tokenizer" not in globals()): from transformers import GPT2TokenizerFast global tokenizer tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/") return utils.decodenewlines(tokenizer.decode(tokens)) #==================================================================# # Encode string into list of token IDs using current tokenizer #==================================================================# @bridged_kwarg() def lua_encode(string): assert type(string) is str if("tokenizer" not in globals()): from transformers import GPT2TokenizerFast global tokenizer tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/") return tokenizer.encode(utils.encodenewlines(string), max_length=int(4e9), truncation=True) #==================================================================# # Computes context given a submission, Lua array of entry UIDs and a Lua array # of folder UIDs #==================================================================# @bridged_kwarg() def lua_compute_context(submission, entries, folders, kwargs): assert type(submission) is str if(kwargs is None): kwargs = vars.lua_state.table() actions = vars._actions if vars.lua_koboldbridge.userstate == "genmod" else vars.actions allowed_entries = None allowed_folders = None if(entries is not None): allowed_entries = set() i = 1 while(entries[i] is not None): allowed_entries.add(int(entries[i])) i += 1 if(folders is not None): allowed_folders = set() i = 1 while(folders[i] is not None): allowed_folders.add(int(folders[i])) i += 1 winfo, mem, anotetxt, _ = calcsubmitbudgetheader( submission, allowed_entries=allowed_entries, allowed_folders=allowed_folders, force_use_txt=True, scan_story=kwargs["scan_story"] if kwargs["scan_story"] != None else True, ) txt, _, _ = calcsubmitbudget( len(actions), winfo, mem, anotetxt, actions, ) return utils.decodenewlines(tokenizer.decode(txt)) #==================================================================# # Get property of a world info entry given its UID and property name #==================================================================# @bridged_kwarg() def lua_get_attr(uid, k): assert type(uid) is int and type(k) is str if(uid in vars.worldinfo_u and k in ( "key", "keysecondary", "content", "comment", "folder", "num", "selective", "constant", "uid", )): return vars.worldinfo_u[uid][k] #==================================================================# # Set property of a world info entry given its UID, property name and new value #==================================================================# @bridged_kwarg() def lua_set_attr(uid, k, v): assert type(uid) is int and type(k) is str assert uid in vars.worldinfo_u and k in ( "key", "keysecondary", "content", "comment", "selective", "constant", ) if(type(vars.worldinfo_u[uid][k]) is int and type(v) is float): v = int(v) assert type(vars.worldinfo_u[uid][k]) is type(v) vars.worldinfo_u[uid][k] = v print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set {k} of world info entry {uid} to {v}" + colors.END) #==================================================================# # Get property of a world info folder given its UID and property name #==================================================================# @bridged_kwarg() def lua_folder_get_attr(uid, k): assert type(uid) is int and type(k) is str if(uid in vars.wifolders_d and k in ( "name", )): return vars.wifolders_d[uid][k] #==================================================================# # Set property of a world info folder given its UID, property name and new value #==================================================================# @bridged_kwarg() def lua_folder_set_attr(uid, k, v): assert type(uid) is int and type(k) is str assert uid in vars.wifolders_d and k in ( "name", ) if(type(vars.wifolders_d[uid][k]) is int and type(v) is float): v = int(v) assert type(vars.wifolders_d[uid][k]) is type(v) vars.wifolders_d[uid][k] = v print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set {k} of world info folder {uid} to {v}" + colors.END) #==================================================================# # Get the "Amount to Generate" #==================================================================# @bridged_kwarg() def lua_get_genamt(): return vars.genamt #==================================================================# # Set the "Amount to Generate" #==================================================================# @bridged_kwarg() def lua_set_genamt(genamt): assert vars.lua_koboldbridge.userstate != "genmod" and type(genamt) in (int, float) and genamt >= 0 print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set genamt to {int(genamt)}" + colors.END) vars.genamt = int(genamt) #==================================================================# # Get the "Gens Per Action" #==================================================================# @bridged_kwarg() def lua_get_numseqs(): return vars.numseqs #==================================================================# # Set the "Gens Per Action" #==================================================================# @bridged_kwarg() def lua_set_numseqs(numseqs): assert type(numseqs) in (int, float) and numseqs >= 1 print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set numseqs to {int(numseqs)}" + colors.END) vars.numseqs = int(numseqs) #==================================================================# # Check if a setting exists with the given name #==================================================================# @bridged_kwarg() def lua_has_setting(setting): return setting in ( "anotedepth", "settemp", "settopp", "settopk", "settfs", "settypical", "setreppen", "setreppenslope", "setreppenrange", "settknmax", "setwidepth", "setuseprompt", "setadventure", "setchatmode", "setdynamicscan", "setnopromptgen", "autosave", "setrngpersist", "temp", "topp", "top_p", "topk", "top_k", "tfs", "typical", "reppen", "reppenslope", "reppenrange", "tknmax", "widepth", "useprompt", "chatmode", "chatname", "adventure", "dynamicscan", "nopromptgen", "rngpersist", "frmttriminc", "frmtrmblln", "frmtrmspch", "frmtadsnsp", "frmtsingleline", "triminc", "rmblln", "rmspch", "adsnsp", "singleline", ) #==================================================================# # Return the setting with the given name if it exists #==================================================================# @bridged_kwarg() def lua_get_setting(setting): if(setting in ("settemp", "temp")): return vars.temp if(setting in ("settopp", "topp", "top_p")): return vars.top_p if(setting in ("settopk", "topk", "top_k")): return vars.top_k if(setting in ("settfs", "tfs")): return vars.tfs if(setting in ("settypical", "typical")): return vars.typical if(setting in ("setreppen", "reppen")): return vars.rep_pen if(setting in ("setreppenslope", "reppenslope")): return vars.rep_pen_slope if(setting in ("setreppenrange", "reppenrange")): return vars.rep_pen_range if(setting in ("settknmax", "tknmax")): return vars.max_length if(setting == "anotedepth"): return vars.andepth if(setting in ("setwidepth", "widepth")): return vars.widepth if(setting in ("setuseprompt", "useprompt")): return vars.useprompt if(setting in ("setadventure", "adventure")): return vars.adventure if(setting in ("setchatmode", "chatmode")): return vars.chatmode if(setting in ("setdynamicscan", "dynamicscan")): return vars.dynamicscan if(setting in ("setnopromptgen", "nopromptgen")): return vars.nopromptgen if(setting in ("autosave", "autosave")): return vars.autosave if(setting in ("setrngpersist", "rngpersist")): return vars.rngpersist if(setting in ("frmttriminc", "triminc")): return vars.formatoptns["frmttriminc"] if(setting in ("frmtrmblln", "rmblln")): return vars.formatoptns["frmttrmblln"] if(setting in ("frmtrmspch", "rmspch")): return vars.formatoptns["frmttrmspch"] if(setting in ("frmtadsnsp", "adsnsp")): return vars.formatoptns["frmtadsnsp"] if(setting in ("frmtsingleline", "singleline")): return vars.formatoptns["singleline"] #==================================================================# # Set the setting with the given name if it exists #==================================================================# @bridged_kwarg() def lua_set_setting(setting, v): actual_type = type(lua_get_setting(setting)) assert v is not None and (actual_type is type(v) or (actual_type is int and type(v) is float)) v = actual_type(v) print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} set {setting} to {v}" + colors.END) if(setting in ("setadventure", "adventure") and v): vars.actionmode = 1 if(setting in ("settemp", "temp")): vars.temp = v if(setting in ("settopp", "topp")): vars.top_p = v if(setting in ("settopk", "topk")): vars.top_k = v if(setting in ("settfs", "tfs")): vars.tfs = v if(setting in ("settypical", "typical")): vars.typical = v if(setting in ("setreppen", "reppen")): vars.rep_pen = v if(setting in ("setreppenslope", "reppenslope")): vars.rep_pen_slope = v if(setting in ("setreppenrange", "reppenrange")): vars.rep_pen_range = v if(setting in ("settknmax", "tknmax")): vars.max_length = v; return True if(setting == "anotedepth"): vars.andepth = v; return True if(setting in ("setwidepth", "widepth")): vars.widepth = v; return True if(setting in ("setuseprompt", "useprompt")): vars.useprompt = v; return True if(setting in ("setadventure", "adventure")): vars.adventure = v if(setting in ("setdynamicscan", "dynamicscan")): vars.dynamicscan = v if(setting in ("setnopromptgen", "nopromptgen")): vars.nopromptgen = v if(setting in ("autosave", "noautosave")): vars.autosave = v if(setting in ("setrngpersist", "rngpersist")): vars.rngpersist = v if(setting in ("setchatmode", "chatmode")): vars.chatmode = v if(setting in ("frmttriminc", "triminc")): vars.formatoptns["frmttriminc"] = v if(setting in ("frmtrmblln", "rmblln")): vars.formatoptns["frmttrmblln"] = v if(setting in ("frmtrmspch", "rmspch")): vars.formatoptns["frmttrmspch"] = v if(setting in ("frmtadsnsp", "adsnsp")): vars.formatoptns["frmtadsnsp"] = v if(setting in ("frmtsingleline", "singleline")): vars.formatoptns["singleline"] = v #==================================================================# # Get contents of memory #==================================================================# @bridged_kwarg() def lua_get_memory(): return vars.memory #==================================================================# # Set contents of memory #==================================================================# @bridged_kwarg() def lua_set_memory(m): assert type(m) is str vars.memory = m #==================================================================# # Get contents of author's note #==================================================================# @bridged_kwarg() def lua_get_authorsnote(): return vars.authornote #==================================================================# # Set contents of author's note #==================================================================# @bridged_kwarg() def lua_set_authorsnote(m): assert type(m) is str vars.authornote = m #==================================================================# # Get contents of author's note template #==================================================================# @bridged_kwarg() def lua_get_authorsnotetemplate(): return vars.authornotetemplate #==================================================================# # Set contents of author's note template #==================================================================# @bridged_kwarg() def lua_set_authorsnotetemplate(m): assert type(m) is str vars.authornotetemplate = m #==================================================================# # Save settings and send them to client #==================================================================# @bridged_kwarg() def lua_resend_settings(): settingschanged() refresh_settings() #==================================================================# # Set story chunk text and delete the chunk if the new chunk is empty #==================================================================# @bridged_kwarg() def lua_set_chunk(k, v): assert type(k) in (int, None) and type(v) is str assert k >= 0 assert k != 0 or len(v) != 0 if(len(v) == 0): print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} deleted story chunk {k}" + colors.END) chunk = int(k) if(vars.lua_koboldbridge.userstate == "genmod"): del vars._actions[chunk-1] vars.lua_deleted.add(chunk) if(not hasattr(vars, "_actions") or vars._actions is not vars.actions): #Instead of deleting we'll blank out the text. This way our actions and actions_metadata stay in sync and we can restore the chunk on an undo vars.actions[chunk-1] = "" vars.actions_metadata[chunk-1]['Alternative Text'] = [{"Text": vars.actions_metadata[chunk-1]['Selected Text'], "Pinned": False, "Editted": True}] + vars.actions_metadata[chunk-1]['Alternative Text'] vars.actions_metadata[chunk-1]['Selected Text'] = '' send_debug() else: if(k == 0): print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} edited prompt chunk" + colors.END) else: print(colors.GREEN + f"{lua_log_format_name(vars.lua_koboldbridge.logging_name)} edited story chunk {k}" + colors.END) chunk = int(k) if(chunk == 0): if(vars.lua_koboldbridge.userstate == "genmod"): vars._prompt = v vars.lua_edited.add(chunk) vars.prompt = v else: if(vars.lua_koboldbridge.userstate == "genmod"): vars._actions[chunk-1] = v vars.lua_edited.add(chunk) vars.actions[chunk-1] = v vars.actions_metadata[chunk-1]['Alternative Text'] = [{"Text": vars.actions_metadata[chunk-1]['Selected Text'], "Pinned": False, "Editted": True}] + vars.actions_metadata[chunk-1]['Alternative Text'] vars.actions_metadata[chunk-1]['Selected Text'] = v send_debug() #==================================================================# # Get model type as "gpt-2-xl", "gpt-neo-2.7B", etc. #==================================================================# @bridged_kwarg() def lua_get_modeltype(): if(vars.noai): return "readonly" if(vars.model in ("Colab", "OAI", "InferKit")): return "api" if(not vars.use_colab_tpu and vars.model not in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX") and (vars.model in ("GPT2Custom", "NeoCustom") or vars.model_type in ("gpt2", "gpt_neo", "gptj"))): hidden_size = get_hidden_size_from_model(model) if(vars.model in ("gpt2",) or (vars.model_type == "gpt2" and hidden_size == 768)): return "gpt2" if(vars.model in ("gpt2-medium",) or (vars.model_type == "gpt2" and hidden_size == 1024)): return "gpt2-medium" if(vars.model in ("gpt2-large",) or (vars.model_type == "gpt2" and hidden_size == 1280)): return "gpt2-large" if(vars.model in ("gpt2-xl",) or (vars.model_type == "gpt2" and hidden_size == 1600)): return "gpt2-xl" if(vars.model_type == "gpt_neo" and hidden_size == 768): return "gpt-neo-125M" if(vars.model in ("EleutherAI/gpt-neo-1.3B",) or (vars.model_type == "gpt_neo" and hidden_size == 2048)): return "gpt-neo-1.3B" if(vars.model in ("EleutherAI/gpt-neo-2.7B",) or (vars.model_type == "gpt_neo" and hidden_size == 2560)): return "gpt-neo-2.7B" if(vars.model in ("EleutherAI/gpt-j-6B",) or ((vars.use_colab_tpu or vars.model == "TPUMeshTransformerGPTJ") and tpu_mtj_backend.params["d_model"] == 4096) or (vars.model_type in ("gpt_neo", "gptj") and hidden_size == 4096)): return "gpt-j-6B" return "unknown" #==================================================================# # Get model backend as "transformers" or "mtj" #==================================================================# @bridged_kwarg() def lua_get_modelbackend(): if(vars.noai): return "readonly" if(vars.model in ("Colab", "OAI", "InferKit")): return "api" if(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")): return "mtj" return "transformers" #==================================================================# # Check whether model is loaded from a custom path #==================================================================# @bridged_kwarg() def lua_is_custommodel(): return vars.model in ("GPT2Custom", "NeoCustom", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX") #==================================================================# # #==================================================================# def execute_inmod(): setgamesaved(False) vars.lua_logname = ... vars.lua_edited = set() vars.lua_deleted = set() try: tpool.execute(vars.lua_koboldbridge.execute_inmod) except lupa.LuaError as e: vars.lua_koboldbridge.obliterate_multiverse() vars.lua_running = False emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True) sendUSStatItems() print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr) print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr) print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr) set_aibusy(0) def execute_genmod(): vars.lua_koboldbridge.execute_genmod() def execute_outmod(): setgamesaved(False) emit('from_server', {'cmd': 'hidemsg', 'data': ''}, broadcast=True) try: tpool.execute(vars.lua_koboldbridge.execute_outmod) except lupa.LuaError as e: vars.lua_koboldbridge.obliterate_multiverse() vars.lua_running = False emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True) sendUSStatItems() print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr) print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr) print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr) set_aibusy(0) if(vars.lua_koboldbridge.resend_settings_required): vars.lua_koboldbridge.resend_settings_required = False lua_resend_settings() for k in vars.lua_edited: inlineedit(k, vars.actions[k]) for k in vars.lua_deleted: inlinedelete(k) #==================================================================# # Lua runtime startup #==================================================================# print("", end="", flush=True) print(colors.PURPLE + "Initializing Lua Bridge... " + colors.END, end="", flush=True) # Set up Lua state vars.lua_state = lupa.LuaRuntime(unpack_returned_tuples=True) # Load bridge.lua bridged = { "corescript_path": "cores", "userscript_path": "userscripts", "config_path": "userscripts", "lib_paths": vars.lua_state.table("lualibs", os.path.join("extern", "lualibs")), "vars": vars, } for kwarg in _bridged: bridged[kwarg] = _bridged[kwarg] try: vars.lua_kobold, vars.lua_koboldcore, vars.lua_koboldbridge = vars.lua_state.globals().dofile("bridge.lua")( vars.lua_state.globals().python, bridged, ) except lupa.LuaError as e: print(colors.RED + "ERROR!" + colors.END) vars.lua_koboldbridge.obliterate_multiverse() print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr) print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr) exit(1) print(colors.GREEN + "OK!" + colors.END) # Load scripts load_lua_scripts() #============================ METHODS =============================# #==================================================================# # Event triggered when browser SocketIO is loaded and connects to server #==================================================================# @socketio.on('connect') def do_connect(): print("{0}Client connected!{1}".format(colors.GREEN, colors.END)) emit('from_server', {'cmd': 'setchatname', 'data': vars.chatname}) emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}) emit('from_server', {'cmd': 'connected', 'smandelete': vars.smandelete, 'smanrename': vars.smanrename, 'modelname': getmodelname()}) if(vars.host): emit('from_server', {'cmd': 'runs_remotely'}) if(vars.allowsp): emit('from_server', {'cmd': 'allowsp', 'data': vars.allowsp}) sendUSStatItems() emit('from_server', {'cmd': 'spstatitems', 'data': {vars.spfilename: vars.spmeta} if vars.allowsp and len(vars.spfilename) else {}}, broadcast=True) if(not vars.gamestarted): setStartState() sendsettings() refresh_settings() vars.laststory = None emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}) sendwi() emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}) emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}) vars.mode = "play" else: # Game in session, send current game data and ready state to browser refresh_story() sendsettings() refresh_settings() emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}) sendwi() emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}) emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}) if(vars.mode == "play"): if(not vars.aibusy): emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}) else: emit('from_server', {'cmd': 'setgamestate', 'data': 'wait'}) elif(vars.mode == "edit"): emit('from_server', {'cmd': 'editmode', 'data': 'true'}) elif(vars.mode == "memory"): emit('from_server', {'cmd': 'memmode', 'data': 'true'}) elif(vars.mode == "wi"): emit('from_server', {'cmd': 'wimode', 'data': 'true'}) emit('from_server', {'cmd': 'gamesaved', 'data': vars.gamesaved}, broadcast=True) #==================================================================# # Event triggered when browser SocketIO sends data to the server #==================================================================# @socketio.on('message') def get_message(msg): if not vars.quiet: print("{0}Data received:{1}{2}".format(colors.GREEN, msg, colors.END)) # Submit action if(msg['cmd'] == 'submit'): if(vars.mode == "play"): if(vars.aibusy): if(msg.get('allowabort', False)): vars.abort = True return vars.abort = False vars.lua_koboldbridge.feedback = None if(vars.chatmode): if(type(msg['chatname']) is not str): raise ValueError("Chatname must be a string") vars.chatname = msg['chatname'] settingschanged() emit('from_server', {'cmd': 'setchatname', 'data': vars.chatname}) vars.recentrng = vars.recentrngm = None actionsubmit(msg['data'], actionmode=msg['actionmode']) elif(vars.mode == "edit"): editsubmit(msg['data']) elif(vars.mode == "memory"): memsubmit(msg['data']) # Retry Action elif(msg['cmd'] == 'retry'): if(vars.aibusy): if(msg.get('allowabort', False)): vars.abort = True return vars.abort = False if(vars.chatmode): if(type(msg['chatname']) is not str): raise ValueError("Chatname must be a string") vars.chatname = msg['chatname'] settingschanged() emit('from_server', {'cmd': 'setchatname', 'data': vars.chatname}) actionretry(msg['data']) # Back/Undo Action elif(msg['cmd'] == 'back'): ignore = actionback() # Forward/Redo Action elif(msg['cmd'] == 'redo'): actionredo() # EditMode Action (old) elif(msg['cmd'] == 'edit'): if(vars.mode == "play"): vars.mode = "edit" emit('from_server', {'cmd': 'editmode', 'data': 'true'}, broadcast=True) elif(vars.mode == "edit"): vars.mode = "play" emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True) # EditLine Action (old) elif(msg['cmd'] == 'editline'): editrequest(int(msg['data'])) # Inline edit elif(msg['cmd'] == 'inlineedit'): inlineedit(msg['chunk'], msg['data']) elif(msg['cmd'] == 'inlinedelete'): inlinedelete(msg['data']) # DeleteLine Action (old) elif(msg['cmd'] == 'delete'): deleterequest() elif(msg['cmd'] == 'memory'): togglememorymode() elif(not vars.host and msg['cmd'] == 'savetofile'): savetofile() elif(not vars.host and msg['cmd'] == 'loadfromfile'): loadfromfile() elif(msg['cmd'] == 'loadfromstring'): loadRequest(json.loads(msg['data']), filename=msg['filename']) elif(not vars.host and msg['cmd'] == 'import'): importRequest() elif(msg['cmd'] == 'newgame'): newGameRequest() elif(msg['cmd'] == 'rndgame'): randomGameRequest(msg['data'], memory=msg['memory']) elif(msg['cmd'] == 'settemp'): vars.temp = float(msg['data']) emit('from_server', {'cmd': 'setlabeltemp', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'settopp'): vars.top_p = float(msg['data']) emit('from_server', {'cmd': 'setlabeltopp', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'settopk'): vars.top_k = int(msg['data']) emit('from_server', {'cmd': 'setlabeltopk', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'settfs'): vars.tfs = float(msg['data']) emit('from_server', {'cmd': 'setlabeltfs', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'settypical'): vars.typical = float(msg['data']) emit('from_server', {'cmd': 'setlabeltypical', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'setreppen'): vars.rep_pen = float(msg['data']) emit('from_server', {'cmd': 'setlabelreppen', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'setreppenslope'): vars.rep_pen_slope = float(msg['data']) emit('from_server', {'cmd': 'setlabelreppenslope', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'setreppenrange'): vars.rep_pen_range = float(msg['data']) emit('from_server', {'cmd': 'setlabelreppenrange', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'setoutput'): vars.genamt = int(msg['data']) emit('from_server', {'cmd': 'setlabeloutput', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'settknmax'): vars.max_length = int(msg['data']) emit('from_server', {'cmd': 'setlabeltknmax', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() elif(msg['cmd'] == 'setikgen'): vars.ikgen = int(msg['data']) emit('from_server', {'cmd': 'setlabelikgen', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() # Author's Note field update elif(msg['cmd'] == 'anote'): anotesubmit(msg['data'], template=msg['template']) # Author's Note depth update elif(msg['cmd'] == 'anotedepth'): vars.andepth = int(msg['data']) emit('from_server', {'cmd': 'setlabelanotedepth', 'data': msg['data']}, broadcast=True) settingschanged() refresh_settings() # Format - Trim incomplete sentences elif(msg['cmd'] == 'frmttriminc'): if('frmttriminc' in vars.formatoptns): vars.formatoptns["frmttriminc"] = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'frmtrmblln'): if('frmtrmblln' in vars.formatoptns): vars.formatoptns["frmtrmblln"] = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'frmtrmspch'): if('frmtrmspch' in vars.formatoptns): vars.formatoptns["frmtrmspch"] = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'frmtadsnsp'): if('frmtadsnsp' in vars.formatoptns): vars.formatoptns["frmtadsnsp"] = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'singleline'): if('singleline' in vars.formatoptns): vars.formatoptns["singleline"] = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'importselect'): vars.importnum = int(msg["data"].replace("import", "")) elif(msg['cmd'] == 'importcancel'): emit('from_server', {'cmd': 'popupshow', 'data': False}) vars.importjs = {} elif(msg['cmd'] == 'importaccept'): emit('from_server', {'cmd': 'popupshow', 'data': False}) importgame() elif(msg['cmd'] == 'wi'): togglewimode() elif(msg['cmd'] == 'wiinit'): if(int(msg['data']) < len(vars.worldinfo)): setgamesaved(False) vars.worldinfo[msg['data']]["init"] = True addwiitem(folder_uid=msg['folder']) elif(msg['cmd'] == 'wifolderinit'): addwifolder() elif(msg['cmd'] == 'wimoveitem'): movewiitem(msg['destination'], msg['data']) elif(msg['cmd'] == 'wimovefolder'): movewifolder(msg['destination'], msg['data']) elif(msg['cmd'] == 'widelete'): deletewi(msg['data']) elif(msg['cmd'] == 'wifolderdelete'): deletewifolder(msg['data']) elif(msg['cmd'] == 'wiexpand'): assert 0 <= int(msg['data']) < len(vars.worldinfo) setgamesaved(False) emit('from_server', {'cmd': 'wiexpand', 'data': msg['data']}, broadcast=True) elif(msg['cmd'] == 'wiexpandfolder'): assert 0 <= int(msg['data']) < len(vars.worldinfo) setgamesaved(False) emit('from_server', {'cmd': 'wiexpandfolder', 'data': msg['data']}, broadcast=True) elif(msg['cmd'] == 'wifoldercollapsecontent'): setgamesaved(False) vars.wifolders_d[msg['data']]['collapsed'] = True emit('from_server', {'cmd': 'wifoldercollapsecontent', 'data': msg['data']}, broadcast=True) elif(msg['cmd'] == 'wifolderexpandcontent'): setgamesaved(False) vars.wifolders_d[msg['data']]['collapsed'] = False emit('from_server', {'cmd': 'wifolderexpandcontent', 'data': msg['data']}, broadcast=True) elif(msg['cmd'] == 'wiupdate'): setgamesaved(False) num = int(msg['num']) fields = ("key", "keysecondary", "content", "comment") for field in fields: if(field in msg['data'] and type(msg['data'][field]) is str): vars.worldinfo[num][field] = msg['data'][field] emit('from_server', {'cmd': 'wiupdate', 'num': msg['num'], 'data': {field: vars.worldinfo[num][field] for field in fields}}, broadcast=True) elif(msg['cmd'] == 'wifolderupdate'): setgamesaved(False) uid = int(msg['uid']) fields = ("name", "collapsed") for field in fields: if(field in msg['data'] and type(msg['data'][field]) is (str if field != "collapsed" else bool)): vars.wifolders_d[uid][field] = msg['data'][field] emit('from_server', {'cmd': 'wifolderupdate', 'uid': msg['uid'], 'data': {field: vars.wifolders_d[uid][field] for field in fields}}, broadcast=True) elif(msg['cmd'] == 'wiselon'): setgamesaved(False) vars.worldinfo[msg['data']]["selective"] = True emit('from_server', {'cmd': 'wiselon', 'data': msg['data']}, broadcast=True) elif(msg['cmd'] == 'wiseloff'): setgamesaved(False) vars.worldinfo[msg['data']]["selective"] = False emit('from_server', {'cmd': 'wiseloff', 'data': msg['data']}, broadcast=True) elif(msg['cmd'] == 'wiconstanton'): setgamesaved(False) vars.worldinfo[msg['data']]["constant"] = True emit('from_server', {'cmd': 'wiconstanton', 'data': msg['data']}, broadcast=True) elif(msg['cmd'] == 'wiconstantoff'): setgamesaved(False) vars.worldinfo[msg['data']]["constant"] = False emit('from_server', {'cmd': 'wiconstantoff', 'data': msg['data']}, broadcast=True) elif(msg['cmd'] == 'sendwilist'): commitwi(msg['data']) elif(msg['cmd'] == 'aidgimport'): importAidgRequest(msg['data']) elif(msg['cmd'] == 'saveasrequest'): saveas(msg['data']) elif(msg['cmd'] == 'saverequest'): save() elif(msg['cmd'] == 'loadlistrequest'): getloadlist() elif(msg['cmd'] == 'splistrequest'): getsplist() elif(msg['cmd'] == 'uslistrequest'): unloaded, loaded = getuslist() emit('from_server', {'cmd': 'buildus', 'data': {"unloaded": unloaded, "loaded": loaded}}) elif(msg['cmd'] == 'usloaded'): vars.userscripts = [] for userscript in msg['data']: if type(userscript) is not str: continue userscript = userscript.strip() if len(userscript) != 0 and all(q not in userscript for q in ("..", ":")) and all(userscript[0] not in q for q in ("/", "\\")) and os.path.exists(fileops.uspath(userscript)): vars.userscripts.append(userscript) settingschanged() elif(msg['cmd'] == 'usload'): load_lua_scripts() unloaded, loaded = getuslist() sendUSStatItems() elif(msg['cmd'] == 'loadselect'): vars.loadselect = msg["data"] elif(msg['cmd'] == 'spselect'): vars.spselect = msg["data"] elif(msg['cmd'] == 'loadrequest'): loadRequest(fileops.storypath(vars.loadselect)) elif(msg['cmd'] == 'sprequest'): spRequest(vars.spselect) emit('from_server', {'cmd': 'spstatitems', 'data': {vars.spfilename: vars.spmeta} if vars.allowsp and len(vars.spfilename) else {}}, broadcast=True) elif(msg['cmd'] == 'deletestory'): deletesave(msg['data']) elif(msg['cmd'] == 'renamestory'): renamesave(msg['data'], msg['newname']) elif(msg['cmd'] == 'clearoverwrite'): vars.svowname = "" vars.saveow = False elif(msg['cmd'] == 'seqsel'): selectsequence(msg['data']) elif(msg['cmd'] == 'seqpin'): pinsequence(msg['data']) elif(msg['cmd'] == 'setnumseq'): vars.numseqs = int(msg['data']) emit('from_server', {'cmd': 'setlabelnumseq', 'data': msg['data']}) settingschanged() refresh_settings() elif(msg['cmd'] == 'setwidepth'): vars.widepth = int(msg['data']) emit('from_server', {'cmd': 'setlabelwidepth', 'data': msg['data']}) settingschanged() refresh_settings() elif(msg['cmd'] == 'setuseprompt'): vars.useprompt = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'setadventure'): vars.adventure = msg['data'] vars.chatmode = False settingschanged() refresh_settings() elif(msg['cmd'] == 'autosave'): vars.autosave = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'setchatmode'): vars.chatmode = msg['data'] vars.adventure = False settingschanged() refresh_settings() elif(msg['cmd'] == 'setdynamicscan'): vars.dynamicscan = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'setnopromptgen'): vars.nopromptgen = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'setrngpersist'): vars.rngpersist = msg['data'] settingschanged() refresh_settings() elif(msg['cmd'] == 'setnogenmod'): vars.nogenmod = msg['data'] settingschanged() refresh_settings() elif(not vars.host and msg['cmd'] == 'importwi'): wiimportrequest() elif(msg['cmd'] == 'debug'): vars.debug = msg['data'] emit('from_server', {'cmd': 'set_debug', 'data': msg['data']}, broadcast=True) if vars.debug: send_debug() #==================================================================# # Send userscripts list to client #==================================================================# def sendUSStatItems(): _, loaded = getuslist() loaded = loaded if vars.lua_running else [] last_userscripts = [e["filename"] for e in loaded] emit('from_server', {'cmd': 'usstatitems', 'data': loaded, 'flash': last_userscripts != vars.last_userscripts}, broadcast=True) vars.last_userscripts = last_userscripts #==================================================================# # KoboldAI Markup Formatting (Mixture of Markdown and sanitized html) #==================================================================# def kml(txt): txt = txt.replace('\>', '>') txt = bleach.clean(markdown.markdown(txt), tags = ['p', 'em', 'strong', 'code', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'ul', 'b', 'i', 'a', 'span', 'button'], styles = ['color', 'font-weight'], attributes=['id', 'class', 'style', 'href']) return txt #==================================================================# # Send start message and tell Javascript to set UI state #==================================================================# def setStartState(): if(vars.welcome): txt = kml(vars.welcome) + "
" else: txt = "Welcome to KoboldAI! You are running "+getmodelname()+".
" if(not vars.noai and not vars.welcome): txt = txt + "Please load a game or enter a prompt below to begin!
" if(vars.noai): txt = txt + "Please load or import a story to read. There is no AI in this mode." emit('from_server', {'cmd': 'updatescreen', 'gamestarted': vars.gamestarted, 'data': txt}, broadcast=True) emit('from_server', {'cmd': 'setgamestate', 'data': 'start'}, broadcast=True) #==================================================================# # Transmit applicable settings to SocketIO to build UI sliders/toggles #==================================================================# def sendsettings(): # Send settings for selected AI type if(vars.model != "InferKit"): for set in gensettings.gensettingstf: emit('from_server', {'cmd': 'addsetting', 'data': set}) else: for set in gensettings.gensettingsik: emit('from_server', {'cmd': 'addsetting', 'data': set}) # Send formatting options for frm in gensettings.formatcontrols: emit('from_server', {'cmd': 'addformat', 'data': frm}) # Add format key to vars if it wasn't loaded with client.settings if(not frm["id"] in vars.formatoptns): vars.formatoptns[frm["id"]] = False; #==================================================================# # Set value of gamesaved #==================================================================# def setgamesaved(gamesaved): assert type(gamesaved) is bool if(gamesaved != vars.gamesaved): emit('from_server', {'cmd': 'gamesaved', 'data': gamesaved}, broadcast=True) vars.gamesaved = gamesaved #==================================================================# # Take input text from SocketIO and decide what to do with it #==================================================================# def check_for_backend_compilation(): if(vars.checking): return vars.checking = True for _ in range(31): time.sleep(0.06276680299820175) if(vars.compiling): emit('from_server', {'cmd': 'warnmsg', 'data': 'Compiling TPU backend—this usually takes 1–2 minutes...'}, broadcast=True) break vars.checking = False def actionsubmit(data, actionmode=0, force_submit=False, force_prompt_gen=False, disable_recentrng=False): # Ignore new submissions if the AI is currently busy if(vars.aibusy): return while(True): set_aibusy(1) if(disable_recentrng): vars.recentrng = vars.recentrngm = None vars.recentback = False vars.recentedit = False vars.actionmode = actionmode # "Action" mode if(actionmode == 1): data = data.strip().lstrip('>') data = re.sub(r'\n+', ' ', data) if(len(data)): data = f"\n\n> {data}\n" # "Chat" mode if(vars.chatmode and vars.gamestarted): data = re.sub(r'\n+', ' ', data) if(len(data)): data = f"\n{vars.chatname}: {data}\n" # If we're not continuing, store a copy of the raw input if(data != ""): vars.lastact = data if(not vars.gamestarted): vars.submission = data execute_inmod() data = vars.submission if(not force_submit and len(data.strip()) == 0): assert False # Start the game vars.gamestarted = True if(not vars.noai and vars.lua_koboldbridge.generating and (not vars.nopromptgen or force_prompt_gen)): # Save this first action as the prompt vars.prompt = data # Clear the startup text from game screen emit('from_server', {'cmd': 'updatescreen', 'gamestarted': False, 'data': 'Please wait, generating story...'}, broadcast=True) calcsubmit(data) # Run the first action through the generator if(not vars.abort and vars.lua_koboldbridge.restart_sequence is not None and len(vars.genseqs) == 0): data = "" force_submit = True disable_recentrng = True continue emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True) break else: # Save this first action as the prompt vars.prompt = data if len(data) > 0 else '"' for i in range(vars.numseqs): vars.lua_koboldbridge.outputs[i+1] = "" execute_outmod() vars.lua_koboldbridge.regeneration_required = False genout = [] for i in range(vars.numseqs): genout.append({"generated_text": vars.lua_koboldbridge.outputs[i+1]}) assert type(genout[-1]["generated_text"]) is str if(len(genout) == 1): genresult(genout[0]["generated_text"], flash=False) refresh_story() if(len(vars.actions) > 0): emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1}, broadcast=True) if(not vars.abort and vars.lua_koboldbridge.restart_sequence is not None): data = "" force_submit = True disable_recentrng = True continue else: if(not vars.abort and vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0): genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"], flash=False) refresh_story() data = "" force_submit = True disable_recentrng = True continue genselect(genout) refresh_story() set_aibusy(0) emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True) break else: # Apply input formatting & scripts before sending to tokenizer if(vars.actionmode == 0): data = applyinputformatting(data) vars.submission = data execute_inmod() data = vars.submission # Dont append submission if it's a blank/continue action if(data != ""): # Store the result in the Action log if(len(vars.prompt.strip()) == 0): vars.prompt = data else: vars.actions.append(data) # we now need to update the actions_metadata # we'll have two conditions. # 1. This is totally new (user entered) if vars.actions.get_last_key() not in vars.actions_metadata: vars.actions_metadata[vars.actions.get_last_key()] = {"Selected Text": data, "Alternative Text": []} else: # 2. We've selected a chunk of text that is was presented previously try: alternatives = [item['Text'] for item in vars.actions_metadata[len(vars.actions)-1]["Alternative Text"]] except: print(len(vars.actions)) print(vars.actions_metadata) raise if data in alternatives: alternatives = [item for item in vars.actions_metadata[vars.actions.get_last_key() ]["Alternative Text"] if item['Text'] != data] vars.actions_metadata[vars.actions.get_last_key()]["Alternative Text"] = alternatives vars.actions_metadata[vars.actions.get_last_key()]["Selected Text"] = data update_story_chunk('last') send_debug() if(not vars.noai and vars.lua_koboldbridge.generating): # Off to the tokenizer! calcsubmit(data) if(not vars.abort and vars.lua_koboldbridge.restart_sequence is not None and len(vars.genseqs) == 0): data = "" force_submit = True disable_recentrng = True continue emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True) break else: for i in range(vars.numseqs): vars.lua_koboldbridge.outputs[i+1] = "" execute_outmod() vars.lua_koboldbridge.regeneration_required = False genout = [] for i in range(vars.numseqs): genout.append({"generated_text": vars.lua_koboldbridge.outputs[i+1]}) assert type(genout[-1]["generated_text"]) is str if(len(genout) == 1): genresult(genout[0]["generated_text"]) if(not vars.abort and vars.lua_koboldbridge.restart_sequence is not None): data = "" force_submit = True disable_recentrng = True continue else: if(not vars.abort and vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0): genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"]) data = "" force_submit = True disable_recentrng = True continue genselect(genout) set_aibusy(0) emit('from_server', {'cmd': 'scrolldown', 'data': ''}, broadcast=True) break #==================================================================# # #==================================================================# def actionretry(data): if(vars.noai): emit('from_server', {'cmd': 'errmsg', 'data': "Retry function unavailable in Read Only mode."}) return if(vars.recentrng is not None): if(not vars.aibusy): randomGameRequest(vars.recentrng, memory=vars.recentrngm) return if actionback(): actionsubmit("", actionmode=vars.actionmode, force_submit=True) send_debug() elif(not vars.useprompt): emit('from_server', {'cmd': 'errmsg', 'data': "Please enable \"Always Add Prompt\" to retry with your prompt."}) #==================================================================# # #==================================================================# def actionback(): if(vars.aibusy): return # Remove last index of actions and refresh game screen if(len(vars.genseqs) == 0 and len(vars.actions) > 0): # We are going to move the selected text to alternative text in the actions_metadata variable so we can redo this action vars.actions_metadata[vars.actions.get_last_key() ]['Alternative Text'] = [{'Text': vars.actions_metadata[vars.actions.get_last_key() ]['Selected Text'], 'Pinned': False, "Previous Selection": True, "Edited": False}] + vars.actions_metadata[vars.actions.get_last_key() ]['Alternative Text'] vars.actions_metadata[vars.actions.get_last_key() ]['Selected Text'] = "" last_key = vars.actions.get_last_key() vars.actions.pop() vars.recentback = True remove_story_chunk(last_key + 1) #for the redo to not get out of whack, need to reset the max # in the actions sequence vars.actions.set_next_id(last_key) success = True elif(len(vars.genseqs) == 0): emit('from_server', {'cmd': 'errmsg', 'data': "Cannot delete the prompt."}) success = False else: vars.genseqs = [] success = True send_debug() return success def actionredo(): i = 0 #First we need to find the next valid key #We might have deleted text so we don't want to show a redo for that blank chunk restore_id = vars.actions.get_last_key()+1 if restore_id in vars.actions_metadata: ok_to_use = False while not ok_to_use: for item in vars.actions_metadata[restore_id]['Alternative Text']: if item['Previous Selection'] and item['Text'] != "": ok_to_use = True if not ok_to_use: restore_id+=1 if restore_id not in vars.actions_metadata: return else: vars.actions.set_next_id(restore_id) if restore_id in vars.actions_metadata: genout = [{"generated_text": item['Text']} for item in vars.actions_metadata[restore_id]['Alternative Text'] if (item["Previous Selection"]==True)] if len(genout) > 0: genout = genout + [{"generated_text": item['Text']} for item in vars.actions_metadata[restore_id]['Alternative Text'] if (item["Pinned"]==True) and (item["Previous Selection"]==False)] if len(genout) == 1: vars.actions_metadata[restore_id]['Alternative Text'] = [item for item in vars.actions_metadata[restore_id]['Alternative Text'] if (item["Previous Selection"]!=True)] genresult(genout[0]['generated_text'], flash=True, ignore_formatting=True) else: # Store sequences in memory until selection is made vars.genseqs = genout # Send sequences to UI for selection genout = [[item['Text'], "redo"] for item in vars.actions_metadata[restore_id]['Alternative Text'] if (item["Previous Selection"]==True)] emit('from_server', {'cmd': 'genseqs', 'data': genout}, broadcast=True) else: emit('from_server', {'cmd': 'popuperror', 'data': "There's nothing to undo"}, broadcast=True) send_debug() #==================================================================# # #==================================================================# def calcsubmitbudgetheader(txt, **kwargs): # Scan for WorldInfo matches winfo, found_entries = checkworldinfo(txt, **kwargs) # Add a newline to the end of memory if(vars.memory != "" and vars.memory[-1] != "\n"): mem = vars.memory + "\n" else: mem = vars.memory # Build Author's Note if set if(vars.authornote != ""): anotetxt = ("\n" + vars.authornotetemplate + "\n").replace("<|>", vars.authornote) else: anotetxt = "" return winfo, mem, anotetxt, found_entries def calcsubmitbudget(actionlen, winfo, mem, anotetxt, actions, submission=None, budget_deduction=0): forceanote = False # In case we don't have enough actions to hit A.N. depth anoteadded = False # In case our budget runs out before we hit A.N. depth anotetkns = [] # Placeholder for Author's Note tokens lnanote = 0 # Placeholder for Author's Note length lnsp = vars.sp_length if("tokenizer" not in globals()): from transformers import GPT2TokenizerFast global tokenizer tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/") # Calculate token budget prompttkns = tokenizer.encode(utils.encodenewlines(vars.comregex_ai.sub('', vars.prompt)), max_length=int(2e9), truncation=True) lnprompt = len(prompttkns) memtokens = tokenizer.encode(utils.encodenewlines(mem), max_length=int(2e9), truncation=True) lnmem = len(memtokens) if(lnmem > vars.max_length - lnsp - vars.genamt - budget_deduction): raise OverflowError("The memory in your story is too long. Please either write a shorter memory text or increase the Max Tokens setting. If you are using a soft prompt, additionally consider using a smaller soft prompt.") witokens = tokenizer.encode(utils.encodenewlines(winfo), max_length=int(2e9), truncation=True) lnwi = len(witokens) if(lnmem + lnwi > vars.max_length - lnsp - vars.genamt - budget_deduction): raise OverflowError("The current active world info keys take up too many tokens. Please either write shorter world info, decrease World Info Depth or increase the Max Tokens setting. If you are using a soft prompt, additionally consider using a smaller soft prompt.") if(anotetxt != ""): anotetkns = tokenizer.encode(utils.encodenewlines(anotetxt), max_length=int(2e9), truncation=True) lnanote = len(anotetkns) if(lnmem + lnwi + lnanote > vars.max_length - lnsp - vars.genamt - budget_deduction): raise OverflowError("The author's note in your story is too long. Please either write a shorter author's note or increase the Max Tokens setting. If you are using a soft prompt, additionally consider using a smaller soft prompt.") if(vars.useprompt): budget = vars.max_length - lnsp - lnprompt - lnmem - lnanote - lnwi - vars.genamt - budget_deduction else: budget = vars.max_length - lnsp - lnmem - lnanote - lnwi - vars.genamt - budget_deduction lnsubmission = len(tokenizer.encode(utils.encodenewlines(vars.comregex_ai.sub('', submission)), max_length=int(2e9), truncation=True)) if submission is not None else 0 maybe_lnprompt = lnprompt if vars.useprompt and actionlen > 0 else 0 if(lnmem + lnwi + lnanote + maybe_lnprompt + lnsubmission > vars.max_length - lnsp - vars.genamt - budget_deduction): raise OverflowError("Your submission is too long. Please either write a shorter submission or increase the Max Tokens setting. If you are using a soft prompt, additionally consider using a smaller soft prompt. If you are using the Always Add Prompt setting, turning it off may help.") assert budget >= 0 if(actionlen == 0): # First/Prompt action tokens = memtokens + witokens + anotetkns + prompttkns assert len(tokens) <= vars.max_length - lnsp - vars.genamt - budget_deduction ln = len(tokens) + lnsp return tokens, ln+1, ln+vars.genamt else: tokens = [] # Check if we have the action depth to hit our A.N. depth if(anotetxt != "" and actionlen < vars.andepth): forceanote = True # Get most recent action tokens up to our budget n = 0 for key in reversed(actions): chunk = vars.comregex_ai.sub('', actions[key]) assert budget >= 0 if(budget <= 0): break acttkns = tokenizer.encode(utils.encodenewlines(chunk), max_length=int(2e9), truncation=True) tknlen = len(acttkns) if(tknlen < budget): tokens = acttkns + tokens budget -= tknlen else: count = budget * -1 tokens = acttkns[count:] + tokens budget = 0 break # Inject Author's Note if we've reached the desired depth if(n == vars.andepth-1): if(anotetxt != ""): tokens = anotetkns + tokens # A.N. len already taken from bdgt anoteadded = True n += 1 # If we're not using the prompt every time and there's still budget left, # add some prompt. if(not vars.useprompt): if(budget > 0): prompttkns = prompttkns[-budget:] else: prompttkns = [] # Did we get to add the A.N.? If not, do it here if(anotetxt != ""): if((not anoteadded) or forceanote): tokens = memtokens + witokens + anotetkns + prompttkns + tokens else: tokens = memtokens + witokens + prompttkns + tokens else: # Prepend Memory, WI, and Prompt before action tokens tokens = memtokens + witokens + prompttkns + tokens # Send completed bundle to generator assert len(tokens) <= vars.max_length - lnsp - vars.genamt - budget_deduction ln = len(tokens) + lnsp return tokens, ln+1, ln+vars.genamt #==================================================================# # Take submitted text and build the text to be given to generator #==================================================================# def calcsubmit(txt): anotetxt = "" # Placeholder for Author's Note text forceanote = False # In case we don't have enough actions to hit A.N. depth anoteadded = False # In case our budget runs out before we hit A.N. depth actionlen = len(vars.actions) winfo, mem, anotetxt, found_entries = calcsubmitbudgetheader(txt) # For all transformers models if(vars.model != "InferKit"): subtxt, min, max = calcsubmitbudget(actionlen, winfo, mem, anotetxt, vars.actions, submission=txt) if(actionlen == 0): if(not vars.use_colab_tpu and vars.model not in ["Colab", "OAI", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]): generate(subtxt, min, max, found_entries=found_entries) elif(vars.model == "Colab"): sendtocolab(utils.decodenewlines(tokenizer.decode(subtxt)), min, max) elif(vars.model == "OAI"): oairequest(utils.decodenewlines(tokenizer.decode(subtxt)), min, max) elif(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")): tpumtjgenerate(subtxt, min, max, found_entries=found_entries) else: if(not vars.use_colab_tpu and vars.model not in ["Colab", "OAI", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]): generate(subtxt, min, max, found_entries=found_entries) elif(vars.model == "Colab"): sendtocolab(utils.decodenewlines(tokenizer.decode(subtxt)), min, max) elif(vars.model == "OAI"): oairequest(utils.decodenewlines(tokenizer.decode(subtxt)), min, max) elif(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")): tpumtjgenerate(subtxt, min, max, found_entries=found_entries) # For InferKit web API else: # Check if we have the action depth to hit our A.N. depth if(anotetxt != "" and actionlen < vars.andepth): forceanote = True if(vars.useprompt): budget = vars.ikmax - len(vars.comregex_ai.sub('', vars.prompt)) - len(anotetxt) - len(mem) - len(winfo) - 1 else: budget = vars.ikmax - len(anotetxt) - len(mem) - len(winfo) - 1 subtxt = "" prompt = vars.comregex_ai.sub('', vars.prompt) n = 0 for key in reversed(vars.actions): chunk = vars.actions[key] if(budget <= 0): break actlen = len(chunk) if(actlen < budget): subtxt = chunk + subtxt budget -= actlen else: count = budget * -1 subtxt = chunk[count:] + subtxt budget = 0 break # If we're not using the prompt every time and there's still budget left, # add some prompt. if(not vars.useprompt): if(budget > 0): prompt = vars.comregex_ai.sub('', vars.prompt)[-budget:] else: prompt = "" # Inject Author's Note if we've reached the desired depth if(n == vars.andepth-1): if(anotetxt != ""): subtxt = anotetxt + subtxt # A.N. len already taken from bdgt anoteadded = True n += 1 # Did we get to add the A.N.? If not, do it here if(anotetxt != ""): if((not anoteadded) or forceanote): subtxt = mem + winfo + anotetxt + prompt + subtxt else: subtxt = mem + winfo + prompt + subtxt else: subtxt = mem + winfo + prompt + subtxt # Send it! ikrequest(subtxt) #==================================================================# # Send text to generator and deal with output #==================================================================# def _generate(txt, minimum, maximum, found_entries): gen_in = torch.tensor(txt, dtype=torch.long)[None] if(vars.sp is not None): soft_tokens = torch.arange( model.config.vocab_size, model.config.vocab_size + vars.sp.shape[0], ) gen_in = torch.cat((soft_tokens[None], gen_in), dim=-1) assert gen_in.shape[-1] + vars.genamt <= vars.max_length if(vars.hascuda and vars.usegpu): gen_in = gen_in.to(vars.gpu_device) elif(vars.hascuda and vars.breakmodel): gen_in = gen_in.to(breakmodel.primary_device) else: gen_in = gen_in.to('cpu') model.kai_scanner_excluded_world_info = found_entries vars._actions = vars.actions vars._prompt = vars.prompt if(vars.dynamicscan): vars._actions = vars._actions.copy() with torch.no_grad(): already_generated = 0 numseqs = vars.numseqs while True: genout = generator( gen_in, do_sample=True, max_length=int(2e9), repetition_penalty=1.1, bad_words_ids=vars.badwordsids, use_cache=True, num_return_sequences=numseqs ) already_generated += len(genout[0]) - len(gen_in[0]) assert already_generated <= vars.genamt if(model.kai_scanner.halt or not model.kai_scanner.regeneration_required): break assert genout.ndim >= 2 assert genout.shape[0] == vars.numseqs if(vars.lua_koboldbridge.generated_cols and vars.generated_tkns != vars.lua_koboldbridge.generated_cols): raise RuntimeError("Inconsistency detected between KoboldAI Python and Lua backends") if(already_generated != vars.generated_tkns): raise RuntimeError("WI scanning error") for r in range(vars.numseqs): for c in range(already_generated): assert vars.lua_koboldbridge.generated[r+1][c+1] is not None genout[r][genout.shape[-1] - already_generated + c] = vars.lua_koboldbridge.generated[r+1][c+1] encoded = [] for i in range(vars.numseqs): txt = utils.decodenewlines(tokenizer.decode(genout[i, -already_generated:])) winfo, mem, anotetxt, _found_entries = calcsubmitbudgetheader(txt, force_use_txt=True, actions=vars._actions) found_entries[i].update(_found_entries) txt, _, _ = calcsubmitbudget(len(vars._actions), winfo, mem, anotetxt, vars._actions, submission=txt) encoded.append(torch.tensor(txt, dtype=torch.long, device=genout.device)) max_length = len(max(encoded, key=len)) encoded = torch.stack(tuple(torch.nn.functional.pad(e, (max_length - len(e), 0), value=model.config.pad_token_id or model.config.eos_token_id) for e in encoded)) genout = torch.cat( ( encoded, genout[..., -already_generated:], ), dim=-1 ) if(vars.sp is not None): soft_tokens = torch.arange( model.config.vocab_size, model.config.vocab_size + vars.sp.shape[0], device=genout.device, ) genout = torch.cat((soft_tokens.tile(vars.numseqs, 1), genout), dim=-1) assert genout.shape[-1] + vars.genamt - already_generated <= vars.max_length diff = genout.shape[-1] - gen_in.shape[-1] minimum += diff maximum += diff gen_in = genout numseqs = 1 return genout, already_generated def generate(txt, minimum, maximum, found_entries=None): vars.generated_tkns = 0 if(found_entries is None): found_entries = set() found_entries = tuple(found_entries.copy() for _ in range(vars.numseqs)) if not vars.quiet: print("{0}Min:{1}, Max:{2}, Txt:{3}{4}".format(colors.YELLOW, minimum, maximum, utils.decodenewlines(tokenizer.decode(txt)), colors.END)) # Store context in memory to use it for comparison with generated content vars.lastctx = utils.decodenewlines(tokenizer.decode(txt)) # Clear CUDA cache if using GPU if(vars.hascuda and (vars.usegpu or vars.breakmodel)): gc.collect() torch.cuda.empty_cache() # Submit input text to generator try: genout, already_generated = tpool.execute(_generate, txt, minimum, maximum, found_entries) except Exception as e: if(issubclass(type(e), lupa.LuaError)): vars.lua_koboldbridge.obliterate_multiverse() vars.lua_running = False emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True) sendUSStatItems() print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr) print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr) print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr) else: emit('from_server', {'cmd': 'errmsg', 'data': 'Error occurred during generator call; please check console.'}, broadcast=True) print("{0}{1}{2}".format(colors.RED, traceback.format_exc().replace("\033", ""), colors.END), file=sys.stderr) set_aibusy(0) return for i in range(vars.numseqs): vars.lua_koboldbridge.generated[i+1][vars.generated_tkns] = int(genout[i, -1].item()) vars.lua_koboldbridge.outputs[i+1] = utils.decodenewlines(tokenizer.decode(genout[i, -already_generated:])) execute_outmod() if(vars.lua_koboldbridge.regeneration_required): vars.lua_koboldbridge.regeneration_required = False genout = [] for i in range(vars.numseqs): genout.append({"generated_text": vars.lua_koboldbridge.outputs[i+1]}) assert type(genout[-1]["generated_text"]) is str else: genout = [{"generated_text": utils.decodenewlines(tokenizer.decode(tokens[-already_generated:]))} for tokens in genout] if(len(genout) == 1): genresult(genout[0]["generated_text"]) else: if(vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0): genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"]) else: genselect(genout) # Clear CUDA cache again if using GPU if(vars.hascuda and (vars.usegpu or vars.breakmodel)): del genout gc.collect() torch.cuda.empty_cache() set_aibusy(0) #==================================================================# # Deal with a single return sequence from generate() #==================================================================# def genresult(genout, flash=True, ignore_formatting=False): if not vars.quiet: print("{0}{1}{2}".format(colors.CYAN, genout, colors.END)) # Format output before continuing if not ignore_formatting: genout = applyoutputformatting(genout) vars.lua_koboldbridge.feedback = genout if(len(genout) == 0): return # Add formatted text to Actions array and refresh the game screen if(len(vars.prompt.strip()) == 0): vars.prompt = genout else: vars.actions.append(genout) if vars.actions.get_last_key() not in vars.actions_metadata: vars.actions_metadata[vars.actions.get_last_key()] = {'Selected Text': genout, 'Alternative Text': []} else: vars.actions_metadata[vars.actions.get_last_key()]['Selected Text'] = genout update_story_chunk('last') if(flash): emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1 if len(vars.actions) else 0}, broadcast=True) send_debug() #==================================================================# # Send generator sequences to the UI for selection #==================================================================# def genselect(genout): i = 0 for result in genout: # Apply output formatting rules to sequences result["generated_text"] = applyoutputformatting(result["generated_text"]) if not vars.quiet: print("{0}[Result {1}]\n{2}{3}".format(colors.CYAN, i, result["generated_text"], colors.END)) i += 1 # Add the options to the actions metadata # If we've already generated text for this action but haven't selected one we'll want to kill all non-pinned, non-previous selection, and non-edited options then add the new ones if vars.actions.get_next_id() in vars.actions_metadata: if (vars.actions_metadata[vars.actions.get_next_id()]['Selected Text'] == ""): vars.actions_metadata[vars.actions.get_next_id()]['Alternative Text'] = [{"Text": item['Text'], "Pinned": item['Pinned'], "Previous Selection": item["Previous Selection"], "Edited": item["Edited"]} for item in vars.actions_metadata[vars.actions.get_next_id()]['Alternative Text'] if item['Pinned'] or item["Previous Selection"] or item["Edited"]] + [{"Text": text["generated_text"], "Pinned": False, "Previous Selection": False, "Edited": False} for text in genout] else: vars.actions_metadata[vars.actions.get_next_id()] = {'Selected Text': '', 'Alternative Text': [{"Text": text["generated_text"], "Pinned": False, "Previous Selection": False, "Edited": False} for text in genout]} else: vars.actions_metadata[vars.actions.get_next_id()] = {'Selected Text': '', 'Alternative Text': [{"Text": text["generated_text"], "Pinned": False, "Previous Selection": False, "Edited": False} for text in genout]} genout = [{"generated_text": item['Text']} for item in vars.actions_metadata[vars.actions.get_next_id()]['Alternative Text'] if (item["Previous Selection"]==False) and (item["Edited"]==False)] # Store sequences in memory until selection is made vars.genseqs = genout genout = [[item['Text'], "pinned" if item['Pinned'] else "normal"] for item in vars.actions_metadata[vars.actions.get_next_id()]['Alternative Text'] if (item["Previous Selection"]==False) and (item["Edited"]==False)] # Send sequences to UI for selection emit('from_server', {'cmd': 'genseqs', 'data': genout}, broadcast=True) send_debug() #==================================================================# # Send selected sequence to action log and refresh UI #==================================================================# def selectsequence(n): if(len(vars.genseqs) == 0): return vars.lua_koboldbridge.feedback = vars.genseqs[int(n)]["generated_text"] if(len(vars.lua_koboldbridge.feedback) != 0): vars.actions.append(vars.lua_koboldbridge.feedback) #We'll want to remove the option from the alternative text and put it in selected text vars.actions_metadata[vars.actions.get_last_key() ]['Alternative Text'] = [item for item in vars.actions_metadata[vars.actions.get_last_key()]['Alternative Text'] if item['Text'] != vars.lua_koboldbridge.feedback] vars.actions_metadata[vars.actions.get_last_key() ]['Selected Text'] = vars.lua_koboldbridge.feedback update_story_chunk('last') emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1 if len(vars.actions) else 0}, broadcast=True) emit('from_server', {'cmd': 'hidegenseqs', 'data': ''}, broadcast=True) vars.genseqs = [] if(vars.lua_koboldbridge.restart_sequence is not None): actionsubmit("", actionmode=vars.actionmode, force_submit=True, disable_recentrng=True) send_debug() #==================================================================# # Pin/Unpin the selected sequence #==================================================================# def pinsequence(n): if n.isnumeric(): text = vars.genseqs[int(n)]['generated_text'] if text in [item['Text'] for item in vars.actions_metadata[vars.actions.get_next_id()]['Alternative Text']]: alternatives = vars.actions_metadata[vars.actions.get_next_id()]['Alternative Text'] for i in range(len(alternatives)): if alternatives[i]['Text'] == text: alternatives[i]['Pinned'] = not alternatives[i]['Pinned'] break vars.actions_metadata[vars.actions.get_next_id()]['Alternative Text'] = alternatives send_debug() #==================================================================# # Send transformers-style request to ngrok/colab host #==================================================================# def sendtocolab(txt, min, max): # Log request to console if not vars.quiet: print("{0}Tokens:{1}, Txt:{2}{3}".format(colors.YELLOW, min-1, txt, colors.END)) # Store context in memory to use it for comparison with generated content vars.lastctx = txt # Build request JSON data reqdata = { 'text': txt, 'min': min, 'max': max, 'rep_pen': vars.rep_pen, 'rep_pen_slope': vars.rep_pen_slope, 'rep_pen_range': vars.rep_pen_range, 'temperature': vars.temp, 'top_p': vars.top_p, 'top_k': vars.top_k, 'tfs': vars.tfs, 'typical': vars.typical, 'numseqs': vars.numseqs, 'retfultxt': False } # Create request req = requests.post( vars.colaburl, json = reqdata ) # Deal with the response if(req.status_code == 200): js = req.json()["data"] # Try to be backwards compatible with outdated colab if("text" in js): genout = [getnewcontent(js["text"])] else: genout = js["seqs"] for i in range(vars.numseqs): vars.lua_koboldbridge.outputs[i+1] = genout[i] execute_outmod() if(vars.lua_koboldbridge.regeneration_required): vars.lua_koboldbridge.regeneration_required = False genout = [] for i in range(vars.numseqs): genout.append(vars.lua_koboldbridge.outputs[i+1]) assert type(genout[-1]) is str if(len(genout) == 1): genresult(genout[0]) else: # Convert torch output format to transformers seqs = [] for seq in genout: seqs.append({"generated_text": seq}) if(vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0): genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"]) else: genselect(genout) # Format output before continuing #genout = applyoutputformatting(getnewcontent(genout)) # Add formatted text to Actions array and refresh the game screen #vars.actions.append(genout) #refresh_story() #emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1 if len(vars.actions) else 0}) set_aibusy(0) else: errmsg = "Colab API Error: Failed to get a reply from the server. Please check the colab console." print("{0}{1}{2}".format(colors.RED, errmsg, colors.END)) emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True) set_aibusy(0) #==================================================================# # Send text to TPU mesh transformer backend #==================================================================# def tpumtjgenerate(txt, minimum, maximum, found_entries=None): vars.generated_tkns = 0 if(found_entries is None): found_entries = set() found_entries = tuple(found_entries.copy() for _ in range(vars.numseqs)) if not vars.quiet: print("{0}Min:{1}, Max:{2}, Txt:{3}{4}".format(colors.YELLOW, minimum, maximum, utils.decodenewlines(tokenizer.decode(txt)), colors.END)) vars._actions = vars.actions vars._prompt = vars.prompt if(vars.dynamicscan): vars._actions = vars._actions.copy() # Submit input text to generator try: soft_tokens = tpumtjgetsofttokens() global past socketio.start_background_task(copy_current_request_context(check_for_backend_compilation)) if(vars.dynamicscan or (not vars.nogenmod and vars.has_genmod)): context = np.tile(np.uint32(txt), (vars.numseqs, 1)) past = np.empty((vars.numseqs, 0), dtype=np.uint32) while(True): genout, n_generated, regeneration_required, halt = tpool.execute( tpu_mtj_backend.infer_dynamic, context, gen_len = maximum-minimum+1, numseqs=vars.numseqs, soft_embeddings=vars.sp, soft_tokens=soft_tokens, excluded_world_info=found_entries, ) past = np.pad(past, ((0, 0), (0, n_generated))) for r in range(vars.numseqs): for c in range(vars.lua_koboldbridge.generated_cols): assert vars.lua_koboldbridge.generated[r+1][c+1] is not None past[r, c] = vars.lua_koboldbridge.generated[r+1][c+1] if(vars.abort or halt or not regeneration_required): break print("(regeneration triggered)") encoded = [] for i in range(vars.numseqs): txt = utils.decodenewlines(tokenizer.decode(past[i])) winfo, mem, anotetxt, _found_entries = calcsubmitbudgetheader(txt, force_use_txt=True, actions=vars._actions) found_entries[i].update(_found_entries) txt, _, _ = calcsubmitbudget(len(vars._actions), winfo, mem, anotetxt, vars._actions, submission=txt) encoded.append(np.array(txt, dtype=np.uint32)) max_length = len(max(encoded, key=len)) encoded = np.stack(tuple(np.pad(e, (max_length - len(e), 0), constant_values=tpu_mtj_backend.pad_token_id) for e in encoded)) context = np.concatenate( ( encoded, past, ), axis=-1, ) else: genout = tpool.execute( tpu_mtj_backend.infer_static, np.uint32(txt), gen_len = maximum-minimum+1, temp=vars.temp, top_p=vars.top_p, top_k=vars.top_k, tfs=vars.tfs, typical=vars.typical, numseqs=vars.numseqs, repetition_penalty=vars.rep_pen, rpslope=vars.rep_pen_slope, rprange=vars.rep_pen_range, soft_embeddings=vars.sp, soft_tokens=soft_tokens, ) past = genout for i in range(vars.numseqs): vars.lua_koboldbridge.generated[i+1] = vars.lua_state.table(*genout[i].tolist()) vars.lua_koboldbridge.generated_cols = vars.generated_tkns = genout[0].shape[-1] except Exception as e: if(issubclass(type(e), lupa.LuaError)): vars.lua_koboldbridge.obliterate_multiverse() vars.lua_running = False emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error; please check console.'}, broadcast=True) sendUSStatItems() print("{0}{1}{2}".format(colors.RED, "***LUA ERROR***: ", colors.END), end="", file=sys.stderr) print("{0}{1}{2}".format(colors.RED, str(e).replace("\033", ""), colors.END), file=sys.stderr) print("{0}{1}{2}".format(colors.YELLOW, "Lua engine stopped; please open 'Userscripts' and press Load to reinitialize scripts.", colors.END), file=sys.stderr) else: emit('from_server', {'cmd': 'errmsg', 'data': 'Error occurred during generator call; please check console.'}, broadcast=True) print("{0}{1}{2}".format(colors.RED, traceback.format_exc().replace("\033", ""), colors.END), file=sys.stderr) set_aibusy(0) return for i in range(vars.numseqs): vars.lua_koboldbridge.outputs[i+1] = utils.decodenewlines(tokenizer.decode(past[i])) genout = past execute_outmod() if(vars.lua_koboldbridge.regeneration_required): vars.lua_koboldbridge.regeneration_required = False genout = [] for i in range(vars.numseqs): genout.append({"generated_text": vars.lua_koboldbridge.outputs[i+1]}) assert type(genout[-1]["generated_text"]) is str else: genout = [{"generated_text": utils.decodenewlines(tokenizer.decode(txt))} for txt in genout] if(len(genout) == 1): genresult(genout[0]["generated_text"]) else: if(vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0): genresult(genout[vars.lua_koboldbridge.restart_sequence-1]["generated_text"]) else: genselect(genout) set_aibusy(0) #==================================================================# # Replaces returns and newlines with HTML breaks #==================================================================# def formatforhtml(txt): return txt.replace("\\r\\n", "
").replace("\\r", "
").replace("\\n", "
").replace("\r\n", "
").replace('\n', '
').replace('\r', '
').replace('</s>', '
') #==================================================================# # Strips submitted text from the text returned by the AI #==================================================================# def getnewcontent(txt): # If the submitted context was blank, then everything is new if(vars.lastctx == ""): return txt # Tokenize the last context and the generated content ctxtokens = tokenizer.encode(utils.encodenewlines(vars.lastctx), max_length=int(2e9), truncation=True) txttokens = tokenizer.encode(utils.encodenewlines(txt), max_length=int(2e9), truncation=True) dif = (len(txttokens) - len(ctxtokens)) * -1 # Remove the context from the returned text newtokens = txttokens[dif:] return utils.decodenewlines(tokenizer.decode(newtokens)) #==================================================================# # Applies chosen formatting options to text submitted to AI #==================================================================# def applyinputformatting(txt): # Add sentence spacing if(vars.formatoptns["frmtadsnsp"]): txt = utils.addsentencespacing(txt, vars) return txt #==================================================================# # Applies chosen formatting options to text returned from AI #==================================================================# def applyoutputformatting(txt): # Use standard quotes and apostrophes txt = utils.fixquotes(txt) # Adventure mode clipping of all characters after '>' if(vars.adventure): txt = vars.acregex_ai.sub('', txt) # Trim incomplete sentences if(vars.formatoptns["frmttriminc"] and not vars.chatmode): txt = utils.trimincompletesentence(txt) # Replace blank lines if(vars.formatoptns["frmtrmblln"] or vars.chatmode): txt = utils.replaceblanklines(txt) # Remove special characters if(vars.formatoptns["frmtrmspch"]): txt = utils.removespecialchars(txt, vars) # Single Line Mode if(vars.formatoptns["singleline"] or vars.chatmode): txt = utils.singlelineprocessing(txt, vars) return txt #==================================================================# # Sends the current story content to the Game Screen #==================================================================# def refresh_story(): text_parts = ['', vars.comregex_ui.sub(lambda m: '\n'.join('' + l + '' for l in m.group().split('\n')), html.escape(vars.prompt)), ''] for idx in vars.actions: item = vars.actions[idx] idx += 1 item = html.escape(item) item = vars.comregex_ui.sub(lambda m: '\n'.join('' + l + '' for l in m.group().split('\n')), item) # Add special formatting to comments item = vars.acregex_ui.sub('\\1', item) # Add special formatting to adventure actions text_parts.extend(('', item, '')) emit('from_server', {'cmd': 'updatescreen', 'gamestarted': vars.gamestarted, 'data': formatforhtml(''.join(text_parts))}, broadcast=True) #==================================================================# # Signals the Game Screen to update one of the chunks #==================================================================# def update_story_chunk(idx: Union[int, str]): if idx == 'last': if len(vars.actions) <= 1: # In this case, we are better off just refreshing the whole thing as the # prompt might not have been shown yet (with a "Generating story..." # message instead). refresh_story() setgamesaved(False) return idx = (vars.actions.get_last_key() if len(vars.actions) else 0) + 1 if idx == 0: text = vars.prompt else: # Actions are 0 based, but in chunks 0 is the prompt. # So the chunk index is one more than the corresponding action index. if(idx - 1 not in vars.actions): return text = vars.actions[idx - 1] item = html.escape(text) item = vars.comregex_ui.sub(lambda m: '\n'.join('' + l + '' for l in m.group().split('\n')), item) # Add special formatting to comments item = vars.acregex_ui.sub('\\1', item) # Add special formatting to adventure actions chunk_text = f'{formatforhtml(item)}' emit('from_server', {'cmd': 'updatechunk', 'data': {'index': idx, 'html': chunk_text}}, broadcast=True) setgamesaved(False) #If we've set the auto save flag, we'll now save the file if vars.autosave and (".json" in vars.savedir): save() #==================================================================# # Signals the Game Screen to remove one of the chunks #==================================================================# def remove_story_chunk(idx: int): emit('from_server', {'cmd': 'removechunk', 'data': idx}, broadcast=True) setgamesaved(False) #==================================================================# # Sends the current generator settings to the Game Menu #==================================================================# def refresh_settings(): # Suppress toggle change events while loading state emit('from_server', {'cmd': 'allowtoggle', 'data': False}, broadcast=True) if(vars.model != "InferKit"): emit('from_server', {'cmd': 'updatetemp', 'data': vars.temp}, broadcast=True) emit('from_server', {'cmd': 'updatetopp', 'data': vars.top_p}, broadcast=True) emit('from_server', {'cmd': 'updatetopk', 'data': vars.top_k}, broadcast=True) emit('from_server', {'cmd': 'updatetfs', 'data': vars.tfs}, broadcast=True) emit('from_server', {'cmd': 'updatetypical', 'data': vars.typical}, broadcast=True) emit('from_server', {'cmd': 'updatereppen', 'data': vars.rep_pen}, broadcast=True) emit('from_server', {'cmd': 'updatereppenslope', 'data': vars.rep_pen_slope}, broadcast=True) emit('from_server', {'cmd': 'updatereppenrange', 'data': vars.rep_pen_range}, broadcast=True) emit('from_server', {'cmd': 'updateoutlen', 'data': vars.genamt}, broadcast=True) emit('from_server', {'cmd': 'updatetknmax', 'data': vars.max_length}, broadcast=True) emit('from_server', {'cmd': 'updatenumseq', 'data': vars.numseqs}, broadcast=True) else: emit('from_server', {'cmd': 'updatetemp', 'data': vars.temp}, broadcast=True) emit('from_server', {'cmd': 'updatetopp', 'data': vars.top_p}, broadcast=True) emit('from_server', {'cmd': 'updateikgen', 'data': vars.ikgen}, broadcast=True) emit('from_server', {'cmd': 'updateanotedepth', 'data': vars.andepth}, broadcast=True) emit('from_server', {'cmd': 'updatewidepth', 'data': vars.widepth}, broadcast=True) emit('from_server', {'cmd': 'updateuseprompt', 'data': vars.useprompt}, broadcast=True) emit('from_server', {'cmd': 'updateadventure', 'data': vars.adventure}, broadcast=True) emit('from_server', {'cmd': 'updatechatmode', 'data': vars.chatmode}, broadcast=True) emit('from_server', {'cmd': 'updatedynamicscan', 'data': vars.dynamicscan}, broadcast=True) emit('from_server', {'cmd': 'updateautosave', 'data': vars.autosave}, broadcast=True) emit('from_server', {'cmd': 'updatenopromptgen', 'data': vars.nopromptgen}, broadcast=True) emit('from_server', {'cmd': 'updaterngpersist', 'data': vars.rngpersist}, broadcast=True) emit('from_server', {'cmd': 'updatenogenmod', 'data': vars.nogenmod}, broadcast=True) emit('from_server', {'cmd': 'updatefrmttriminc', 'data': vars.formatoptns["frmttriminc"]}, broadcast=True) emit('from_server', {'cmd': 'updatefrmtrmblln', 'data': vars.formatoptns["frmtrmblln"]}, broadcast=True) emit('from_server', {'cmd': 'updatefrmtrmspch', 'data': vars.formatoptns["frmtrmspch"]}, broadcast=True) emit('from_server', {'cmd': 'updatefrmtadsnsp', 'data': vars.formatoptns["frmtadsnsp"]}, broadcast=True) emit('from_server', {'cmd': 'updatesingleline', 'data': vars.formatoptns["singleline"]}, broadcast=True) # Allow toggle events again emit('from_server', {'cmd': 'allowtoggle', 'data': True}, broadcast=True) #==================================================================# # Sets the logical and display states for the AI Busy condition #==================================================================# def set_aibusy(state): if(state): vars.aibusy = True emit('from_server', {'cmd': 'setgamestate', 'data': 'wait'}, broadcast=True) else: vars.aibusy = False emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True) #==================================================================# # #==================================================================# def editrequest(n): if(n == 0): txt = vars.prompt else: txt = vars.actions[n-1] vars.editln = n emit('from_server', {'cmd': 'setinputtext', 'data': txt}, broadcast=True) emit('from_server', {'cmd': 'enablesubmit', 'data': ''}, broadcast=True) #==================================================================# # #==================================================================# def editsubmit(data): vars.recentedit = True if(vars.editln == 0): vars.prompt = data else: vars.actions_metadata[vars.editln-1]['Alternative Text'] = vars.actions_metadata[vars.editln-1]['Alternative Text'] + [{"Text": vars.actions[vars.editln-1], "Pinned": False, "Previous Selection": False, "Edited": True}] vars.actions_metadata[vars.editln-1]['Selected Text'] = data vars.actions[vars.editln-1] = data vars.mode = "play" update_story_chunk(vars.editln) emit('from_server', {'cmd': 'texteffect', 'data': vars.editln}, broadcast=True) emit('from_server', {'cmd': 'editmode', 'data': 'false'}) send_debug() #==================================================================# # #==================================================================# def deleterequest(): vars.recentedit = True # Don't delete prompt if(vars.editln == 0): # Send error message pass else: vars.actions_metadata[vars.editln-1]['Alternative Text'] = [{"Text": vars.actions[vars.editln-1], "Pinned": False, "Previous Selection": True, "Edited": False}] + vars.actions_metadata[vars.editln-1]['Alternative Text'] vars.actions_metadata[vars.editln-1]['Selected Text'] = '' vars.actions[vars.editln-1] = '' vars.mode = "play" remove_story_chunk(vars.editln) emit('from_server', {'cmd': 'editmode', 'data': 'false'}) send_debug() #==================================================================# # #==================================================================# def inlineedit(chunk, data): vars.recentedit = True chunk = int(chunk) if(chunk == 0): if(len(data.strip()) == 0): return vars.prompt = data else: if(chunk-1 in vars.actions): vars.actions_metadata[chunk-1]['Alternative Text'] = vars.actions_metadata[chunk-1]['Alternative Text'] + [{"Text": vars.actions[chunk-1], "Pinned": False, "Previous Selection": False, "Edited": True}] vars.actions_metadata[chunk-1]['Selected Text'] = data vars.actions[chunk-1] = data else: print(f"WARNING: Attempted to edit non-existent chunk {chunk}") setgamesaved(False) update_story_chunk(chunk) emit('from_server', {'cmd': 'texteffect', 'data': chunk}, broadcast=True) emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True) send_debug() #==================================================================# # #==================================================================# def inlinedelete(chunk): vars.recentedit = True chunk = int(chunk) # Don't delete prompt if(chunk == 0): # Send error message update_story_chunk(chunk) emit('from_server', {'cmd': 'errmsg', 'data': "Cannot delete the prompt."}) emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True) else: if(chunk-1 in vars.actions): vars.actions_metadata[chunk-1]['Alternative Text'] = [{"Text": vars.actions[chunk-1], "Pinned": False, "Previous Selection": True, "Edited": False}] + vars.actions_metadata[chunk-1]['Alternative Text'] vars.actions_metadata[chunk-1]['Selected Text'] = '' vars.actions[chunk-1] = '' else: print(f"WARNING: Attempted to delete non-existent chunk {chunk}") setgamesaved(False) remove_story_chunk(chunk) emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True) send_debug() #==================================================================# # Toggles the game mode for memory editing and sends UI commands #==================================================================# def togglememorymode(): if(vars.mode == "play"): vars.mode = "memory" emit('from_server', {'cmd': 'memmode', 'data': 'true'}, broadcast=True) emit('from_server', {'cmd': 'setinputtext', 'data': vars.memory}, broadcast=True) emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True) emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True) elif(vars.mode == "memory"): vars.mode = "play" emit('from_server', {'cmd': 'memmode', 'data': 'false'}, broadcast=True) #==================================================================# # Toggles the game mode for WI editing and sends UI commands #==================================================================# def togglewimode(): if(vars.mode == "play"): vars.mode = "wi" emit('from_server', {'cmd': 'wimode', 'data': 'true'}, broadcast=True) elif(vars.mode == "wi"): # Commit WI fields first requestwi() # Then set UI state back to Play vars.mode = "play" emit('from_server', {'cmd': 'wimode', 'data': 'false'}, broadcast=True) sendwi() #==================================================================# # #==================================================================# def addwiitem(folder_uid=None): assert folder_uid is None or folder_uid in vars.wifolders_d ob = {"key": "", "keysecondary": "", "content": "", "comment": "", "folder": folder_uid, "num": len(vars.worldinfo), "init": False, "selective": False, "constant": False} vars.worldinfo.append(ob) while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.worldinfo_u): break vars.worldinfo_u[uid] = vars.worldinfo[-1] vars.worldinfo[-1]["uid"] = uid if(folder_uid is not None): vars.wifolders_u[folder_uid].append(vars.worldinfo[-1]) emit('from_server', {'cmd': 'addwiitem', 'data': ob}, broadcast=True) #==================================================================# # Creates a new WI folder with an unused cryptographically secure random UID #==================================================================# def addwifolder(): while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.wifolders_d): break ob = {"name": "", "collapsed": False} vars.wifolders_d[uid] = ob vars.wifolders_l.append(uid) vars.wifolders_u[uid] = [] emit('from_server', {'cmd': 'addwifolder', 'uid': uid, 'data': ob}, broadcast=True) addwiitem(folder_uid=uid) #==================================================================# # Move the WI entry with UID src so that it immediately precedes # the WI entry with UID dst #==================================================================# def movewiitem(dst, src): setgamesaved(False) if(vars.worldinfo_u[src]["folder"] is not None): for i, e in enumerate(vars.wifolders_u[vars.worldinfo_u[src]["folder"]]): if(e is vars.worldinfo_u[src]): vars.wifolders_u[vars.worldinfo_u[src]["folder"]].pop(i) break if(vars.worldinfo_u[dst]["folder"] is not None): vars.wifolders_u[vars.worldinfo_u[dst]["folder"]].append(vars.worldinfo_u[src]) vars.worldinfo_u[src]["folder"] = vars.worldinfo_u[dst]["folder"] for i, e in enumerate(vars.worldinfo): if(e is vars.worldinfo_u[src]): _src = i elif(e is vars.worldinfo_u[dst]): _dst = i vars.worldinfo.insert(_dst - (_dst >= _src), vars.worldinfo.pop(_src)) sendwi() #==================================================================# # Move the WI folder with UID src so that it immediately precedes # the WI folder with UID dst #==================================================================# def movewifolder(dst, src): setgamesaved(False) vars.wifolders_l.remove(src) if(dst is None): # If dst is None, that means we should move src to be the last folder vars.wifolders_l.append(src) else: vars.wifolders_l.insert(vars.wifolders_l.index(dst), src) sendwi() #==================================================================# # #==================================================================# def sendwi(): # Cache len of WI ln = len(vars.worldinfo) # Clear contents of WI container emit('from_server', {'cmd': 'wistart', 'wifolders_d': vars.wifolders_d, 'wifolders_l': vars.wifolders_l, 'data': ''}, broadcast=True) # Stable-sort WI entries in order of folder stablesortwi() vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]] # If there are no WI entries, send an empty WI object if(ln == 0): addwiitem() else: # Send contents of WI array last_folder = ... for wi in vars.worldinfo: if(wi["folder"] != last_folder): emit('from_server', {'cmd': 'addwifolder', 'uid': wi["folder"], 'data': vars.wifolders_d[wi["folder"]] if wi["folder"] is not None else None}, broadcast=True) last_folder = wi["folder"] ob = wi emit('from_server', {'cmd': 'addwiitem', 'data': ob}, broadcast=True) emit('from_server', {'cmd': 'wifinish', 'data': ''}, broadcast=True) #==================================================================# # Request current contents of all WI HTML elements #==================================================================# def requestwi(): list = [] for wi in vars.worldinfo: list.append(wi["num"]) emit('from_server', {'cmd': 'requestwiitem', 'data': list}) #==================================================================# # Stable-sort WI items so that items in the same folder are adjacent, # and items in different folders are sorted based on the order of the folders #==================================================================# def stablesortwi(): mapping = {uid: index for index, uid in enumerate(vars.wifolders_l)} vars.worldinfo.sort(key=lambda x: mapping[x["folder"]] if x["folder"] is not None else float("inf")) last_folder = ... last_wi = None for i, wi in enumerate(vars.worldinfo): wi["num"] = i wi["init"] = True if(wi["folder"] != last_folder): if(last_wi is not None and last_folder is not ...): last_wi["init"] = False last_folder = wi["folder"] last_wi = wi if(last_wi is not None): last_wi["init"] = False for folder in vars.wifolders_u: vars.wifolders_u[folder].sort(key=lambda x: x["num"]) #==================================================================# # Extract object from server and send it to WI objects #==================================================================# def commitwi(ar): for ob in ar: ob["uid"] = int(ob["uid"]) vars.worldinfo_u[ob["uid"]]["key"] = ob["key"] vars.worldinfo_u[ob["uid"]]["keysecondary"] = ob["keysecondary"] vars.worldinfo_u[ob["uid"]]["content"] = ob["content"] vars.worldinfo_u[ob["uid"]]["comment"] = ob.get("comment", "") vars.worldinfo_u[ob["uid"]]["folder"] = ob.get("folder", None) vars.worldinfo_u[ob["uid"]]["selective"] = ob["selective"] vars.worldinfo_u[ob["uid"]]["constant"] = ob.get("constant", False) stablesortwi() vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]] #==================================================================# # #==================================================================# def deletewi(uid): if(uid in vars.worldinfo_u): setgamesaved(False) # Store UID of deletion request vars.deletewi = uid if(vars.deletewi is not None): if(vars.worldinfo_u[vars.deletewi]["folder"] is not None): for i, e in enumerate(vars.wifolders_u[vars.worldinfo_u[vars.deletewi]["folder"]]): if(e is vars.worldinfo_u[vars.deletewi]): vars.wifolders_u[vars.worldinfo_u[vars.deletewi]["folder"]].pop(i) for i, e in enumerate(vars.worldinfo): if(e is vars.worldinfo_u[vars.deletewi]): del vars.worldinfo[i] break del vars.worldinfo_u[vars.deletewi] # Send the new WI array structure sendwi() # And reset deletewi vars.deletewi = None #==================================================================# # #==================================================================# def deletewifolder(uid): uid = int(uid) del vars.wifolders_u[uid] del vars.wifolders_d[uid] del vars.wifolders_l[vars.wifolders_l.index(uid)] setgamesaved(False) # Delete uninitialized entries in the folder we're going to delete vars.worldinfo = [wi for wi in vars.worldinfo if wi["folder"] != uid or wi["init"]] vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]] # Move WI entries that are inside of the folder we're going to delete # so that they're outside of all folders for wi in vars.worldinfo: if(wi["folder"] == uid): wi["folder"] = None sendwi() #==================================================================# # Look for WI keys in text to generator #==================================================================# def checkworldinfo(txt, allowed_entries=None, allowed_folders=None, force_use_txt=False, scan_story=True, actions=None): original_txt = txt if(actions is None): actions = vars.actions # Dont go any further if WI is empty if(len(vars.worldinfo) == 0): return "", set() # Cache actions length ln = len(actions) # Don't bother calculating action history if widepth is 0 if(vars.widepth > 0 and scan_story): depth = vars.widepth # If this is not a continue, add 1 to widepth since submitted # text is already in action history @ -1 if(not force_use_txt and (txt != "" and vars.prompt != txt)): txt = "" depth += 1 if(ln > 0): chunks = collections.deque() i = 0 for key in reversed(actions): chunk = actions[key] chunks.appendleft(chunk) i += 1 if(i == depth): break if(ln >= depth): txt = "".join(chunks) elif(ln > 0): txt = vars.comregex_ai.sub('', vars.prompt) + "".join(chunks) elif(ln == 0): txt = vars.comregex_ai.sub('', vars.prompt) if(force_use_txt): txt += original_txt # Scan text for matches on WI keys wimem = "" found_entries = set() for wi in vars.worldinfo: if(allowed_entries is not None and wi["uid"] not in allowed_entries): continue if(allowed_folders is not None and wi["folder"] not in allowed_folders): continue if(wi.get("constant", False)): wimem = wimem + wi["content"] + "\n" found_entries.add(id(wi)) continue if(len(wi["key"].strip()) > 0 and (not wi.get("selective", False) or len(wi.get("keysecondary", "").strip()) > 0)): # Split comma-separated keys keys = wi["key"].split(",") keys_secondary = wi.get("keysecondary", "").split(",") for k in keys: ky = k # Remove leading/trailing spaces if the option is enabled if(vars.wirmvwhtsp): ky = k.strip() if ky in txt: if wi.get("selective", False) and len(keys_secondary): found = False for ks in keys_secondary: ksy = ks if(vars.wirmvwhtsp): ksy = ks.strip() if ksy in txt: wimem = wimem + wi["content"] + "\n" found_entries.add(id(wi)) found = True break if found: break else: wimem = wimem + wi["content"] + "\n" found_entries.add(id(wi)) break return wimem, found_entries #==================================================================# # Commit changes to Memory storage #==================================================================# def memsubmit(data): emit('from_server', {'cmd': 'setinputtext', 'data': data}, broadcast=True) # Maybe check for length at some point # For now just send it to storage if(data != vars.memory): setgamesaved(False) vars.memory = data vars.mode = "play" emit('from_server', {'cmd': 'memmode', 'data': 'false'}, broadcast=True) # Ask for contents of Author's Note field emit('from_server', {'cmd': 'getanote', 'data': ''}) #==================================================================# # Commit changes to Author's Note #==================================================================# def anotesubmit(data, template=""): assert type(data) is str and type(template) is str # Maybe check for length at some point # For now just send it to storage if(data != vars.authornote): setgamesaved(False) vars.authornote = data if(vars.authornotetemplate != template): vars.setauthornotetemplate = template settingschanged() vars.authornotetemplate = template emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True) emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True) #==================================================================# # Assembles game data into a request to InferKit API #==================================================================# def ikrequest(txt): # Log request to console if not vars.quiet: print("{0}Len:{1}, Txt:{2}{3}".format(colors.YELLOW, len(txt), txt, colors.END)) # Build request JSON data reqdata = { 'forceNoEnd': True, 'length': vars.ikgen, 'prompt': { 'isContinuation': False, 'text': txt }, 'startFromBeginning': False, 'streamResponse': False, 'temperature': vars.temp, 'topP': vars.top_p } # Create request req = requests.post( vars.url, json = reqdata, headers = { 'Authorization': 'Bearer '+vars.apikey } ) # Deal with the response if(req.status_code == 200): genout = req.json()["data"]["text"] vars.lua_koboldbridge.outputs[1] = genout execute_outmod() if(vars.lua_koboldbridge.regeneration_required): vars.lua_koboldbridge.regeneration_required = False genout = vars.lua_koboldbridge.outputs[1] assert genout is str if not vars.quiet: print("{0}{1}{2}".format(colors.CYAN, genout, colors.END)) vars.actions.append(genout) if vars.actions.get_last_key() in vars.actions_metadata: vars.actions_metadata[vars.actions.get_last_key()] = {"Selected Text": genout, "Alternative Text": []} else: # 2. We've selected a chunk of text that is was presented previously alternatives = [item['Text'] for item in vars.actions_metadata[vars.actions.get_last_key()]["Alternative Text"]] if genout in alternatives: alternatives = [item for item in vars.actions_metadata[vars.actions.get_last_key()]["Alternative Text"] if item['Text'] != genout] vars.actions_metadata[vars.actions.get_last_key()]["Alternative Text"] = alternatives vars.actions_metadata[vars.actions.get_last_key()]["Selected Text"] = genout update_story_chunk('last') emit('from_server', {'cmd': 'texteffect', 'data': vars.actions.get_last_key() + 1 if len(vars.actions) else 0}, broadcast=True) send_debug() set_aibusy(0) else: # Send error message to web client er = req.json() if("error" in er): code = er["error"]["extensions"]["code"] elif("errors" in er): code = er["errors"][0]["extensions"]["code"] errmsg = "InferKit API Error: {0} - {1}".format(req.status_code, code) emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True) set_aibusy(0) #==================================================================# # Assembles game data into a request to OpenAI API #==================================================================# def oairequest(txt, min, max): # Log request to console if not vars.quiet: print("{0}Len:{1}, Txt:{2}{3}".format(colors.YELLOW, len(txt), txt, colors.END)) # Store context in memory to use it for comparison with generated content vars.lastctx = txt # Build request JSON data if 'GooseAI' in args.configname: reqdata = { 'prompt': txt, 'max_tokens': vars.genamt, 'temperature': vars.temp, 'top_p': vars.top_p, 'top_k': vars.top_k, 'tfs': vars.tfs, 'typical_p': vars.typical, 'repetition_penalty': vars.rep_pen, 'repetition_penalty_slope': vars.rep_pen_slope, 'repetition_penalty_range': vars.rep_pen_range, 'n': vars.numseqs, 'stream': False } else: reqdata = { 'prompt': txt, 'max_tokens': vars.genamt, 'temperature': vars.temp, 'top_p': vars.top_p, 'n': vars.numseqs, 'stream': False } req = requests.post( vars.oaiurl, json = reqdata, headers = { 'Authorization': 'Bearer '+vars.oaiapikey, 'Content-Type': 'application/json' } ) # Deal with the response if(req.status_code == 200): outputs = [out["text"] for out in req.json()["choices"]] for idx in range(len(outputs)): vars.lua_koboldbridge.outputs[idx+1] = outputs[idx] execute_outmod() if (vars.lua_koboldbridge.regeneration_required): vars.lua_koboldbridge.regeneration_required = False genout = [] for i in range(len(outputs)): genout.append( {"generated_text": vars.lua_koboldbridge.outputs[i + 1]}) assert type(genout[-1]["generated_text"]) is str else: genout = [ {"generated_text": utils.decodenewlines(txt)} for txt in outputs] if vars.actions.get_last_key() not in vars.actions_metadata: vars.actions_metadata[vars.actions.get_last_key()] = { "Selected Text": genout[0], "Alternative Text": []} else: # 2. We've selected a chunk of text that is was presented previously try: alternatives = [item['Text'] for item in vars.actions_metadata[len(vars.actions)-1]["Alternative Text"]] except: print(len(vars.actions)) print(vars.actions_metadata) raise if genout in alternatives: alternatives = [item for item in vars.actions_metadata[vars.actions.get_last_key() ]["Alternative Text"] if item['Text'] != genout] vars.actions_metadata[vars.actions.get_last_key()]["Alternative Text"] = alternatives vars.actions_metadata[vars.actions.get_last_key()]["Selected Text"] = genout if (len(genout) == 1): genresult(genout[0]["generated_text"]) else: if (vars.lua_koboldbridge.restart_sequence is not None and vars.lua_koboldbridge.restart_sequence > 0): genresult(genout[vars.lua_koboldbridge.restart_sequence - 1][ "generated_text"]) else: genselect(genout) if not vars.quiet: print("{0}{1}{2}".format(colors.CYAN, genout, colors.END)) set_aibusy(0) else: # Send error message to web client er = req.json() if("error" in er): type = er["error"]["type"] message = er["error"]["message"] errmsg = "OpenAI API Error: {0} - {1}".format(type, message) emit('from_server', {'cmd': 'errmsg', 'data': errmsg}, broadcast=True) set_aibusy(0) #==================================================================# # Forces UI to Play mode #==================================================================# def exitModes(): if(vars.mode == "edit"): emit('from_server', {'cmd': 'editmode', 'data': 'false'}, broadcast=True) elif(vars.mode == "memory"): emit('from_server', {'cmd': 'memmode', 'data': 'false'}, broadcast=True) elif(vars.mode == "wi"): emit('from_server', {'cmd': 'wimode', 'data': 'false'}, broadcast=True) vars.mode = "play" #==================================================================# # Launch in-browser save prompt #==================================================================# def saveas(data): name = data['name'] savepins = data['pins'] # Check if filename exists already name = utils.cleanfilename(name) if(not fileops.saveexists(name) or (vars.saveow and vars.svowname == name)): # All clear to save e = saveRequest(fileops.storypath(name), savepins=savepins) vars.saveow = False vars.svowname = "" if(e is None): emit('from_server', {'cmd': 'hidesaveas', 'data': ''}) else: print("{0}{1}{2}".format(colors.RED, str(e), colors.END)) emit('from_server', {'cmd': 'popuperror', 'data': str(e)}) else: # File exists, prompt for overwrite vars.saveow = True vars.svowname = name emit('from_server', {'cmd': 'askforoverwrite', 'data': ''}) #==================================================================# # Launch in-browser story-delete prompt #==================================================================# def deletesave(name): name = utils.cleanfilename(name) e = fileops.deletesave(name) if(e is None): if(vars.smandelete): emit('from_server', {'cmd': 'hidepopupdelete', 'data': ''}) getloadlist() else: emit('from_server', {'cmd': 'popuperror', 'data': "The server denied your request to delete this story"}) else: print("{0}{1}{2}".format(colors.RED, str(e), colors.END)) emit('from_server', {'cmd': 'popuperror', 'data': str(e)}) #==================================================================# # Launch in-browser story-rename prompt #==================================================================# def renamesave(name, newname): # Check if filename exists already name = utils.cleanfilename(name) newname = utils.cleanfilename(newname) if(not fileops.saveexists(newname) or name == newname or (vars.saveow and vars.svowname == newname)): e = fileops.renamesave(name, newname) vars.saveow = False vars.svowname = "" if(e is None): if(vars.smanrename): emit('from_server', {'cmd': 'hidepopuprename', 'data': ''}) getloadlist() else: emit('from_server', {'cmd': 'popuperror', 'data': "The server denied your request to rename this story"}) else: print("{0}{1}{2}".format(colors.RED, str(e), colors.END)) emit('from_server', {'cmd': 'popuperror', 'data': str(e)}) else: # File exists, prompt for overwrite vars.saveow = True vars.svowname = newname emit('from_server', {'cmd': 'askforoverwrite', 'data': ''}) #==================================================================# # Save the currently running story #==================================================================# def save(): # Check if a file is currently open if(".json" in vars.savedir): saveRequest(vars.savedir) else: emit('from_server', {'cmd': 'saveas', 'data': ''}) #==================================================================# # Save the story via file browser #==================================================================# def savetofile(): savpath = fileops.getsavepath(vars.savedir, "Save Story As", [("Json", "*.json")]) saveRequest(savpath) #==================================================================# # Save the story to specified path #==================================================================# def saveRequest(savpath, savepins=True): if(savpath): # Leave Edit/Memory mode before continuing exitModes() # Save path for future saves vars.savedir = savpath txtpath = os.path.splitext(savpath)[0] + ".txt" # Build json to write js = {} js["gamestarted"] = vars.gamestarted js["prompt"] = vars.prompt js["memory"] = vars.memory js["authorsnote"] = vars.authornote js["anotetemplate"] = vars.authornotetemplate js["actions"] = tuple(vars.actions.values()) if savepins: js["actions_metadata"] = vars.actions_metadata js["worldinfo"] = [] js["wifolders_d"] = vars.wifolders_d js["wifolders_l"] = vars.wifolders_l # Extract only the important bits of WI for wi in vars.worldinfo_i: if(True): js["worldinfo"].append({ "key": wi["key"], "keysecondary": wi["keysecondary"], "content": wi["content"], "comment": wi["comment"], "folder": wi["folder"], "selective": wi["selective"], "constant": wi["constant"] }) txt = vars.prompt + "".join(vars.actions.values()) # Write it try: file = open(savpath, "w") except Exception as e: return e try: file.write(json.dumps(js, indent=3)) except Exception as e: file.close() return e file.close() try: file = open(txtpath, "w") except Exception as e: return e try: file.write(txt) except Exception as e: file.close() return e file.close() filename = path.basename(savpath) if(filename.endswith('.json')): filename = filename[:-5] vars.laststory = filename emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True) setgamesaved(True) print("{0}Story saved to {1}!{2}".format(colors.GREEN, path.basename(savpath), colors.END)) #==================================================================# # Show list of saved stories #==================================================================# def getloadlist(): emit('from_server', {'cmd': 'buildload', 'data': fileops.getstoryfiles()}) #==================================================================# # Show list of soft prompts #==================================================================# def getsplist(): if(vars.allowsp): emit('from_server', {'cmd': 'buildsp', 'data': fileops.getspfiles(vars.modeldim)}) #==================================================================# # Get list of userscripts #==================================================================# def getuslist(): files = {i: v for i, v in enumerate(fileops.getusfiles())} loaded = [] unloaded = [] userscripts = set(vars.userscripts) for i in range(len(files)): if files[i]["filename"] not in userscripts: unloaded.append(files[i]) files = {files[k]["filename"]: files[k] for k in files} userscripts = set(files.keys()) for filename in vars.userscripts: if filename in userscripts: loaded.append(files[filename]) return unloaded, loaded #==================================================================# # Load a saved story via file browser #==================================================================# def loadfromfile(): loadpath = fileops.getloadpath(vars.savedir, "Select Story File", [("Json", "*.json")]) loadRequest(loadpath) #==================================================================# # Load a stored story from a file #==================================================================# def loadRequest(loadpath, filename=None): if(loadpath): # Leave Edit/Memory mode before continuing exitModes() # Read file contents into JSON object if(isinstance(loadpath, str)): with open(loadpath, "r") as file: js = json.load(file) if(filename is None): filename = path.basename(loadpath) else: js = loadpath if(filename is None): filename = "untitled.json" # Copy file contents to vars vars.gamestarted = js["gamestarted"] vars.prompt = js["prompt"] vars.memory = js["memory"] vars.worldinfo = [] vars.worldinfo = [] vars.worldinfo_u = {} vars.wifolders_d = {int(k): v for k, v in js.get("wifolders_d", {}).items()} vars.wifolders_l = js.get("wifolders_l", []) vars.wifolders_u = {uid: [] for uid in vars.wifolders_d} vars.lastact = "" vars.submission = "" vars.lastctx = "" del vars.actions vars.actions = structures.KoboldStoryRegister() actions = collections.deque(js["actions"]) if "actions_metadata" in js: if type(js["actions_metadata"]) == dict: temp = js["actions_metadata"] vars.actions_metadata = {} #we need to redo the numbering of the actions_metadata since the actions list doesn't preserve it's number on saving if len(temp) > 0: counter = 0 temp = {int(k):v for k,v in temp.items()} for i in range(max(temp)+1): if i in temp: vars.actions_metadata[counter] = temp[i] counter += 1 del temp else: #fix if we're using the old metadata format vars.actions_metadata = {} i = 0 for text in js['actions']: vars.actions_metadata[i] = {'Selected Text': text, 'Alternative Text': []} i+=1 else: vars.actions_metadata = {} i = 0 for text in js['actions']: vars.actions_metadata[i] = {'Selected Text': text, 'Alternative Text': []} i+=1 if(len(vars.prompt.strip()) == 0): while(len(actions)): action = actions.popleft() if(len(action.strip()) != 0): vars.prompt = action break else: vars.gamestarted = False if(vars.gamestarted): for s in actions: vars.actions.append(s) # Try not to break older save files if("authorsnote" in js): vars.authornote = js["authorsnote"] else: vars.authornote = "" if("anotetemplate" in js): vars.authornotetemplate = js["anotetemplate"] else: vars.authornotetemplate = "[Author's note: <|>]" if("worldinfo" in js): num = 0 for wi in js["worldinfo"]: vars.worldinfo.append({ "key": wi["key"], "keysecondary": wi.get("keysecondary", ""), "content": wi["content"], "comment": wi.get("comment", ""), "folder": wi.get("folder", None), "num": num, "init": True, "selective": wi.get("selective", False), "constant": wi.get("constant", False), "uid": None, }) while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.worldinfo_u): break vars.worldinfo_u[uid] = vars.worldinfo[-1] vars.worldinfo[-1]["uid"] = uid if(vars.worldinfo[-1]["folder"] is not None): vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1]) num += 1 for uid in vars.wifolders_l + [None]: vars.worldinfo.append({"key": "", "keysecondary": "", "content": "", "comment": "", "folder": uid, "num": None, "init": False, "selective": False, "constant": False, "uid": None}) while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.worldinfo_u): break vars.worldinfo_u[uid] = vars.worldinfo[-1] vars.worldinfo[-1]["uid"] = uid if(vars.worldinfo[-1]["folder"] is not None): vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1]) stablesortwi() vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]] # Save path for save button vars.savedir = loadpath # Clear loadselect var vars.loadselect = "" # Refresh game screen _filename = filename if(filename.endswith('.json')): _filename = filename[:-5] vars.laststory = _filename emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True) setgamesaved(True) sendwi() emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True) emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True) emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True) refresh_story() emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True) emit('from_server', {'cmd': 'hidegenseqs', 'data': ''}, broadcast=True) print("{0}Story loaded from {1}!{2}".format(colors.GREEN, filename, colors.END)) send_debug() #==================================================================# # Import an AIDungon game exported with Mimi's tool #==================================================================# def importRequest(): importpath = fileops.getloadpath(vars.savedir, "Select AID CAT File", [("Json", "*.json")]) if(importpath): # Leave Edit/Memory mode before continuing exitModes() # Read file contents into JSON object file = open(importpath, "rb") vars.importjs = json.load(file) # If a bundle file is being imported, select just the Adventures object if type(vars.importjs) is dict and "stories" in vars.importjs: vars.importjs = vars.importjs["stories"] # Clear Popup Contents emit('from_server', {'cmd': 'clearpopup', 'data': ''}, broadcast=True) # Initialize vars num = 0 vars.importnum = -1 # Get list of stories for story in vars.importjs: ob = {} ob["num"] = num if(story["title"] != "" and story["title"] != None): ob["title"] = story["title"] else: ob["title"] = "(No Title)" if(story["description"] != "" and story["description"] != None): ob["descr"] = story["description"] else: ob["descr"] = "(No Description)" if("actions" in story): ob["acts"] = len(story["actions"]) elif("actionWindow" in story): ob["acts"] = len(story["actionWindow"]) emit('from_server', {'cmd': 'addimportline', 'data': ob}) num += 1 # Show Popup emit('from_server', {'cmd': 'popupshow', 'data': True}) #==================================================================# # Import an AIDungon game selected in popup #==================================================================# def importgame(): if(vars.importnum >= 0): # Cache reference to selected game ref = vars.importjs[vars.importnum] # Copy game contents to vars vars.gamestarted = True # Support for different versions of export script if("actions" in ref): if(len(ref["actions"]) > 0): vars.prompt = ref["actions"][0]["text"] else: vars.prompt = "" elif("actionWindow" in ref): if(len(ref["actionWindow"]) > 0): vars.prompt = ref["actionWindow"][0]["text"] else: vars.prompt = "" else: vars.prompt = "" vars.memory = ref["memory"] vars.authornote = ref["authorsNote"] if type(ref["authorsNote"]) is str else "" vars.authornotetemplate = "[Author's note: <|>]" vars.actions = structures.KoboldStoryRegister() vars.actions_metadata = {} vars.worldinfo = [] vars.worldinfo_i = [] vars.worldinfo_u = {} vars.wifolders_d = {} vars.wifolders_l = [] vars.wifolders_u = {uid: [] for uid in vars.wifolders_d} vars.lastact = "" vars.submission = "" vars.lastctx = "" # Get all actions except for prompt if("actions" in ref): if(len(ref["actions"]) > 1): for act in ref["actions"][1:]: vars.actions.append(act["text"]) elif("actionWindow" in ref): if(len(ref["actionWindow"]) > 1): for act in ref["actionWindow"][1:]: vars.actions.append(act["text"]) # Get just the important parts of world info if(ref["worldInfo"] != None): if(len(ref["worldInfo"]) > 1): num = 0 for wi in ref["worldInfo"]: vars.worldinfo.append({ "key": wi["keys"], "keysecondary": wi.get("keysecondary", ""), "content": wi["entry"], "comment": wi.get("comment", ""), "folder": wi.get("folder", None), "num": num, "init": True, "selective": wi.get("selective", False), "constant": wi.get("constant", False), "uid": None, }) while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.worldinfo_u): break vars.worldinfo_u[uid] = vars.worldinfo[-1] vars.worldinfo[-1]["uid"] = uid if(vars.worldinfo[-1]["folder"]) is not None: vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1]) num += 1 for uid in vars.wifolders_l + [None]: vars.worldinfo.append({"key": "", "keysecondary": "", "content": "", "comment": "", "folder": uid, "num": None, "init": False, "selective": False, "constant": False, "uid": None}) while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.worldinfo_u): break vars.worldinfo_u[uid] = vars.worldinfo[-1] vars.worldinfo[-1]["uid"] = uid if(vars.worldinfo[-1]["folder"] is not None): vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1]) stablesortwi() vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]] # Clear import data vars.importjs = {} # Reset current save vars.savedir = getcwd()+"\stories" # Refresh game screen vars.laststory = None emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True) setgamesaved(False) sendwi() emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True) emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True) emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True) refresh_story() emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True) emit('from_server', {'cmd': 'hidegenseqs', 'data': ''}, broadcast=True) #==================================================================# # Import an aidg.club prompt and start a new game with it. #==================================================================# def importAidgRequest(id): exitModes() urlformat = "https://prompts.aidg.club/api/" req = requests.get(urlformat+id) if(req.status_code == 200): js = req.json() # Import game state vars.gamestarted = True vars.prompt = js["promptContent"] vars.memory = js["memory"] vars.authornote = js["authorsNote"] vars.authornotetemplate = "[Author's note: <|>]" vars.actions = structures.KoboldStoryRegister() vars.actions_metadata = {} vars.worldinfo = [] vars.worldinfo_i = [] vars.worldinfo_u = {} vars.wifolders_d = {} vars.wifolders_l = [] vars.wifolders_u = {uid: [] for uid in vars.wifolders_d} vars.lastact = "" vars.submission = "" vars.lastctx = "" num = 0 for wi in js["worldInfos"]: vars.worldinfo.append({ "key": wi["keys"], "keysecondary": wi.get("keysecondary", ""), "content": wi["entry"], "comment": wi.get("comment", ""), "folder": wi.get("folder", None), "num": num, "init": True, "selective": wi.get("selective", False), "constant": wi.get("constant", False), "uid": None, }) while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.worldinfo_u): break vars.worldinfo_u[uid] = vars.worldinfo[-1] vars.worldinfo[-1]["uid"] = uid if(vars.worldinfo[-1]["folder"]) is not None: vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1]) num += 1 for uid in vars.wifolders_l + [None]: vars.worldinfo.append({"key": "", "keysecondary": "", "content": "", "comment": "", "folder": uid, "num": None, "init": False, "selective": False, "constant": False, "uid": None}) while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.worldinfo_u): break vars.worldinfo_u[uid] = vars.worldinfo[-1] vars.worldinfo[-1]["uid"] = uid if(vars.worldinfo[-1]["folder"] is not None): vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1]) stablesortwi() vars.worldinfo_i = [wi for wi in vars.worldinfo if wi["init"]] # Reset current save vars.savedir = getcwd()+"\stories" # Refresh game screen vars.laststory = None emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True) setgamesaved(False) sendwi() emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True) emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True) emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True) refresh_story() emit('from_server', {'cmd': 'setgamestate', 'data': 'ready'}, broadcast=True) #==================================================================# # Import World Info JSON file #==================================================================# def wiimportrequest(): importpath = fileops.getloadpath(vars.savedir, "Select World Info File", [("Json", "*.json")]) if(importpath): file = open(importpath, "rb") js = json.load(file) if(len(js) > 0): # If the most recent WI entry is blank, remove it. if(not vars.worldinfo[-1]["init"]): del vars.worldinfo[-1] # Now grab the new stuff num = len(vars.worldinfo) for wi in js: vars.worldinfo.append({ "key": wi["keys"], "keysecondary": wi.get("keysecondary", ""), "content": wi["entry"], "comment": wi.get("comment", ""), "folder": wi.get("folder", None), "num": num, "init": True, "selective": wi.get("selective", False), "constant": wi.get("constant", False), "uid": None, }) while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.worldinfo_u): break vars.worldinfo_u[uid] = vars.worldinfo[-1] vars.worldinfo[-1]["uid"] = uid if(vars.worldinfo[-1]["folder"]) is not None: vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1]) num += 1 for uid in [None]: vars.worldinfo.append({"key": "", "keysecondary": "", "content": "", "comment": "", "folder": uid, "num": None, "init": False, "selective": False, "constant": False, "uid": None}) while(True): uid = int.from_bytes(os.urandom(4), "little", signed=True) if(uid not in vars.worldinfo_u): break vars.worldinfo_u[uid] = vars.worldinfo[-1] vars.worldinfo[-1]["uid"] = uid if(vars.worldinfo[-1]["folder"] is not None): vars.wifolders_u[vars.worldinfo[-1]["folder"]].append(vars.worldinfo[-1]) if not vars.quiet: print("{0}".format(vars.worldinfo[0])) # Refresh game screen setgamesaved(False) sendwi() #==================================================================# # Starts a new story #==================================================================# def newGameRequest(): # Leave Edit/Memory mode before continuing exitModes() # Clear vars values vars.gamestarted = False vars.prompt = "" vars.memory = "" vars.actions = structures.KoboldStoryRegister() vars.actions_metadata = {} vars.authornote = "" vars.authornotetemplate = vars.setauthornotetemplate vars.worldinfo = [] vars.worldinfo_i = [] vars.worldinfo_u = {} vars.wifolders_d = {} vars.wifolders_l = [] vars.lastact = "" vars.submission = "" vars.lastctx = "" # Reset current save vars.savedir = getcwd()+"\stories" # Refresh game screen vars.laststory = None emit('from_server', {'cmd': 'setstoryname', 'data': vars.laststory}, broadcast=True) setgamesaved(True) sendwi() emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True) emit('from_server', {'cmd': 'setanote', 'data': vars.authornote}, broadcast=True) emit('from_server', {'cmd': 'setanotetemplate', 'data': vars.authornotetemplate}, broadcast=True) setStartState() def randomGameRequest(topic, memory=""): if(vars.noai): newGameRequest() vars.memory = memory emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True) return vars.recentrng = topic vars.recentrngm = memory newGameRequest() setgamesaved(False) _memory = memory if(len(memory) > 0): _memory = memory.rstrip() + "\n\n" vars.memory = _memory + "You generate the following " + topic + " story concept :" vars.lua_koboldbridge.feedback = None actionsubmit("", force_submit=True, force_prompt_gen=True) vars.memory = memory emit('from_server', {'cmd': 'setmemory', 'data': vars.memory}, broadcast=True) # Prevent tokenizer from taking extra time the first time it's used def __preempt_tokenizer(): if("tokenizer" not in globals()): return utils.decodenewlines(tokenizer.decode([25678, 559])) tokenizer.encode(utils.encodenewlines("eunoia")) threading.Thread(target=__preempt_tokenizer).start() # Load soft prompt specified by the settings file, if applicable if(path.exists("settings/" + getmodelname().replace('/', '_') + ".settings")): file = open("settings/" + getmodelname().replace('/', '_') + ".settings", "r") js = json.load(file) if(vars.allowsp and "softprompt" in js and type(js["softprompt"]) is str and all(q not in js["softprompt"] for q in ("..", ":")) and (len(js["softprompt"]) == 0 or all(js["softprompt"][0] not in q for q in ("/", "\\")))): spRequest(js["softprompt"]) else: vars.spfilename = "" file.close() # Precompile TPU backend if required if(vars.use_colab_tpu or vars.model in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")): soft_tokens = tpumtjgetsofttokens() if(vars.dynamicscan or (not vars.nogenmod and vars.has_genmod)): threading.Thread( target=tpu_mtj_backend.infer_dynamic, args=(np.tile(np.uint32((23403, 727, 20185)), (vars.numseqs, 1)),), kwargs={ "soft_embeddings": vars.sp, "soft_tokens": soft_tokens, "gen_len": 1, "use_callback": False, "numseqs": vars.numseqs, "excluded_world_info": list(set() for _ in range(vars.numseqs)), }, ).start() else: threading.Thread( target=tpu_mtj_backend.infer_static, args=(np.uint32((23403, 727, 20185)),), kwargs={ "soft_embeddings": vars.sp, "soft_tokens": soft_tokens, "gen_len": 1, "numseqs": vars.numseqs, }, ).start() def send_debug(): if vars.debug: debug_info = "" try: debug_info = "{}Newline Mode: {}\n".format(debug_info, vars.newlinemode) except: pass try: debug_info = "{}Action Length: {}\n".format(debug_info, vars.actions.get_last_key()) except: pass try: debug_info = "{}Actions Metadata Length: {}\n".format(debug_info, max(vars.actions_metadata) if len(vars.actions_metadata) > 0 else 0) except: pass try: debug_info = "{}Actions: {}\n".format(debug_info, [k for k in vars.actions]) except: pass try: debug_info = "{}Actions Metadata: {}\n".format(debug_info, [k for k in vars.actions_metadata]) except: pass try: debug_info = "{}Last Action: {}\n".format(debug_info, vars.actions[vars.actions.get_last_key()]) except: pass try: debug_info = "{}Last Metadata: {}\n".format(debug_info, vars.actions_metadata[max(vars.actions_metadata)]) except: pass emit('from_server', {'cmd': 'debug_info', 'data': debug_info}, broadcast=True) #==================================================================# # Final startup commands to launch Flask app #==================================================================# print("", end="", flush=True) if __name__ == "__main__": print("{0}\nStarting webserver...{1}".format(colors.GREEN, colors.END), flush=True) # Start Flask/SocketIO (Blocking, so this must be last method!) #socketio.run(app, host='0.0.0.0', port=5000) if(vars.host): if(args.ngrok): from flask_ngrok import _run_ngrok cloudflare = _run_ngrok() elif(args.remote): from flask_cloudflared import _run_cloudflared cloudflare = _run_cloudflared(5000) if(args.ngrok or args.remote): with open('cloudflare.log', 'w') as cloudflarelog: cloudflarelog.write("KoboldAI has finished loading and is available at the following link : " + cloudflare) print(format(colors.GREEN) + "KoboldAI has finished loading and is available at the following link : " + cloudflare + format(colors.END)) else: print("{0}Webserver has started, you can now connect to this machine at port 5000{1}".format(colors.GREEN, colors.END)) vars.serverstarted = True socketio.run(app, host='0.0.0.0', port=5000) else: import webbrowser webbrowser.open_new('http://localhost:5000') print("{0}Server started!\nYou may now connect with a browser at http://127.0.0.1:5000/{1}".format(colors.GREEN, colors.END)) vars.serverstarted = True if args.unblock: socketio.run(app, port=5000, host='0.0.0.0') else: socketio.run(app, port=5000) else: print("{0}\nServer started in WSGI mode!{1}".format(colors.GREEN, colors.END), flush=True)