Merge pull request #70 from pi6am/feat/exllama-unban-eos

Hook up use_default_badwordids in exllama
This commit is contained in:
Llama
2023-08-29 23:17:37 -07:00
committed by GitHub
2 changed files with 13 additions and 18 deletions

View File

@@ -3918,7 +3918,8 @@ def generate(txt, minimum, maximum, found_entries=None, gen_mode=GenerationMode.
return return
for i in range(koboldai_vars.numseqs): for i in range(koboldai_vars.numseqs):
koboldai_vars.lua_koboldbridge.generated[i+1][koboldai_vars.generated_tkns] = int(genout[i, -1].item()) if len(genout[i]) > 0:
koboldai_vars.lua_koboldbridge.generated[i+1][koboldai_vars.generated_tkns] = int(genout[i, -1].item())
koboldai_vars.lua_koboldbridge.outputs[i+1] = utils.decodenewlines(tokenizer.decode(genout[i, -already_generated:])) koboldai_vars.lua_koboldbridge.outputs[i+1] = utils.decodenewlines(tokenizer.decode(genout[i, -already_generated:]))
execute_outmod() execute_outmod()

View File

@@ -102,9 +102,6 @@ class model_backend(InferenceModel):
post_token_probs=False, post_token_probs=False,
) )
# We need to wait until the tokenizer is available to fill this in.
self.badwordsids = []
def is_valid(self, model_name, model_path, menu_path): def is_valid(self, model_name, model_path, menu_path):
gptq_model, _ = load_model_gptq_settings(model_path) gptq_model, _ = load_model_gptq_settings(model_path)
try: try:
@@ -129,7 +126,6 @@ class model_backend(InferenceModel):
self.model = self._get_model(self.get_local_model_path(), {}) self.model = self._get_model(self.get_local_model_path(), {})
self.tokenizer = self._get_tokenizer(self.get_local_model_path()) self.tokenizer = self._get_tokenizer(self.get_local_model_path())
self.badwordsids = [self.tokenizer.bos_token_id, self.tokenizer.eos_token_id]
self.cache = ExLlamaCache(self.model) self.cache = ExLlamaCache(self.model)
self.generator = ExLlamaGenerator(self.model, self.tokenizer.tokenizer, self.cache) self.generator = ExLlamaGenerator(self.model, self.tokenizer.tokenizer, self.cache)
@@ -221,6 +217,8 @@ class model_backend(InferenceModel):
# Cache the newline token (for single line mode) # Cache the newline token (for single line mode)
# Since there is only one Llama token containing newline, just encode \n # Since there is only one Llama token containing newline, just encode \n
self.newline_tokens = self.tokenizer.encode("\n") self.newline_tokens = self.tokenizer.encode("\n")
self.bracket_tokens = [i for i, tok in enumerate(vocab) if '[' in tok or ']' in tok]
self.tokenizer._koboldai_header = self.tokenizer.encode("")
def unload(self): def unload(self):
self.model_config = None self.model_config = None
@@ -290,9 +288,12 @@ class model_backend(InferenceModel):
if seed: if seed:
torch.manual_seed(seed) torch.manual_seed(seed)
bad_words_ids = self.badwordsids bad_words_ids = [self.tokenizer.bos_token_id]
if utils.koboldai_vars.use_default_badwordids:
bad_words_ids.append(self.tokenizer.eos_token_id)
bad_words_ids.extend(self.bracket_tokens)
if single_line: if single_line:
bad_words_ids = list(bad_words_ids) + self.newline_tokens bad_words_ids.extend(self.newline_tokens)
if not isinstance(prompt_tokens, torch.Tensor): if not isinstance(prompt_tokens, torch.Tensor):
gen_in = torch.tensor(prompt_tokens, dtype=torch.long)[None] gen_in = torch.tensor(prompt_tokens, dtype=torch.long)[None]
@@ -301,7 +302,6 @@ class model_backend(InferenceModel):
self.generator.gen_begin_reuse(gen_in) self.generator.gen_begin_reuse(gen_in)
trim_count = 0
for i in range(max_new): for i in range(max_new):
logits = self.model.forward(self.generator.sequence[:, -1:], self.generator.cache) logits = self.model.forward(self.generator.sequence[:, -1:], self.generator.cache)
for bad_word_id in bad_words_ids: for bad_word_id in bad_words_ids:
@@ -322,16 +322,15 @@ class model_backend(InferenceModel):
if (scores.gather(1, token) > 0).all(): if (scores.gather(1, token) > 0).all():
break break
if (token == self.tokenizer.eos_token_id).any():
break
self.generator.gen_accept_token(token) self.generator.gen_accept_token(token)
self._post_token_gen(self.generator.sequence) self._post_token_gen(self.generator.sequence)
utils.koboldai_vars.generated_tkns += 1 utils.koboldai_vars.generated_tkns += 1
if (token == self.tokenizer.eos_token_id).any():
trim_count = 1
break
# Apply stoppers # Apply stoppers
do_stop = False do_stop = False
for stopper in self.stopper_hooks: for stopper in self.stopper_hooks:
@@ -341,11 +340,7 @@ class model_backend(InferenceModel):
if do_stop: if do_stop:
break break
utils.koboldai_vars.generated_tkns = max_new - trim_count seq = self.generator.sequence[:, gen_in.size(1):]
if trim_count > 0:
seq = self.generator.sequence[:, gen_in.size(1):-trim_count]
else:
seq = self.generator.sequence[:, gen_in.size(1):]
return GenerationResult( return GenerationResult(
model=self, model=self,
@@ -365,7 +360,6 @@ class model_backend(InferenceModel):
def _get_tokenizer(self, location: str): def _get_tokenizer(self, location: str):
tokenizer = GenericTokenizer(LlamaTokenizer.from_pretrained(location)) tokenizer = GenericTokenizer(LlamaTokenizer.from_pretrained(location))
tokenizer._koboldai_header = tokenizer.encode("")
return tokenizer return tokenizer
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}): def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):