Fix some more typos in prompt_tuner.py
This commit is contained in:
parent
a49a633164
commit
f79926b73d
|
@ -127,28 +127,28 @@ def get_tokenizer(model_id, revision=None) -> transformers.PreTrainedTokenizerBa
|
||||||
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
||||||
elif(os.path.isdir("models/{}".format(vars.model.replace('/', '_')))):
|
elif(os.path.isdir("models/{}".format(model_id.replace('/', '_')))):
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=revision, cache_dir="cache")
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(model_id.replace('/', '_')), revision=revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pass
|
pass
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=revision, cache_dir="cache", use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(model_id.replace('/', '_')), revision=revision, cache_dir="cache", use_fast=False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=revision, cache_dir="cache")
|
tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(model_id.replace('/', '_')), revision=revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=revision, cache_dir="cache")
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
pass
|
pass
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=revision, cache_dir="cache", use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, cache_dir="cache", use_fast=False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = GPT2TokenizerFast.from_pretrained(vars.model, revision=revision, cache_dir="cache")
|
tokenizer = GPT2TokenizerFast.from_pretrained(model_id, revision=revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=revision, cache_dir="cache")
|
||||||
|
|
||||||
|
@ -474,20 +474,20 @@ class TrainerBase(abc.ABC):
|
||||||
if("out of memory" in traceback.format_exc().lower()):
|
if("out of memory" in traceback.format_exc().lower()):
|
||||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||||
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
||||||
elif(os.path.isdir("models/{}".format(vars.model.replace('/', '_')))):
|
elif(os.path.isdir("models/{}".format(self.data.ckpt_path.replace('/', '_')))):
|
||||||
try:
|
try:
|
||||||
model = AutoPromptTuningLM.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=REVISION, cache_dir="cache")
|
model = AutoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if("out of memory" in traceback.format_exc().lower()):
|
if("out of memory" in traceback.format_exc().lower()):
|
||||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||||
model = GPTNeoPromptTuningLM.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=REVISION, cache_dir="cache")
|
model = GPTNeoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
model = AutoPromptTuningLM.from_pretrained(vars.model, revision=REVISION, cache_dir="cache")
|
model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if("out of memory" in traceback.format_exc().lower()):
|
if("out of memory" in traceback.format_exc().lower()):
|
||||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||||
model = GPTNeoPromptTuningLM.from_pretrained(vars.model, revision=REVISION, cache_dir="cache")
|
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
|
||||||
|
|
||||||
if step == 0:
|
if step == 0:
|
||||||
soft_embeddings = self.get_initial_soft_embeddings(model)
|
soft_embeddings = self.get_initial_soft_embeddings(model)
|
||||||
|
|
Loading…
Reference in New Issue