Use original TPU backend if possible

This commit is contained in:
Gnome Ann 2022-01-15 23:31:07 -05:00
parent 877fa39b8a
commit f4eb896a69
6 changed files with 405 additions and 61 deletions

View File

@ -157,6 +157,7 @@ class vars:
spmeta = None # Metadata of current soft prompt, or None if not using a soft prompt spmeta = None # Metadata of current soft prompt, or None if not using a soft prompt
sp = None # Current soft prompt tensor (as a NumPy array) sp = None # Current soft prompt tensor (as a NumPy array)
sp_length = 0 # Length of current soft prompt in tokens, or 0 if not using a soft prompt sp_length = 0 # Length of current soft prompt in tokens, or 0 if not using a soft prompt
has_genmod = False # Whether or not at least one loaded Lua userscript has a generation modifier
svowname = "" # Filename that was flagged for overwrite confirm svowname = "" # Filename that was flagged for overwrite confirm
saveow = False # Whether or not overwrite confirm has been displayed saveow = False # Whether or not overwrite confirm has been displayed
genseqs = [] # Temporary storage for generated sequences genseqs = [] # Temporary storage for generated sequences
@ -184,6 +185,7 @@ class vars:
remote = False remote = False
nopromptgen = False nopromptgen = False
rngpersist = False rngpersist = False
nogenmod = False
#==================================================================# #==================================================================#
# Function to get model selection at startup # Function to get model selection at startup
@ -1062,19 +1064,6 @@ else:
vars.allowsp = True vars.allowsp = True
vars.modeldim = int(tpu_mtj_backend.params["d_model"]) vars.modeldim = int(tpu_mtj_backend.params["d_model"])
tokenizer = tpu_mtj_backend.tokenizer tokenizer = tpu_mtj_backend.tokenizer
soft_tokens = tpumtjgetsofttokens()
threading.Thread( # Compile backend code in background
target=tpu_mtj_backend.infer,
args=(np.tile(np.uint32((23403, 727, 20185)), (vars.numseqs, 1)),),
kwargs={
"soft_embeddings": vars.sp,
"soft_tokens": soft_tokens,
"use_callback": False,
"gen_len": 1,
"numseqs": vars.numseqs,
"excluded_world_info": list(set() for _ in range(vars.numseqs)),
},
).start()
# Set up Flask routes # Set up Flask routes
@app.route('/') @app.route('/')
@ -1182,13 +1171,18 @@ def load_lua_scripts():
modulenames.append(lst[i]["modulename"]) modulenames.append(lst[i]["modulename"])
descriptions.append(lst[i]["description"]) descriptions.append(lst[i]["description"])
vars.has_genmod = False
try: try:
vars.lua_koboldbridge.obliterate_multiverse() vars.lua_koboldbridge.obliterate_multiverse()
tpool.execute(vars.lua_koboldbridge.load_corescript, vars.corescript) tpool.execute(vars.lua_koboldbridge.load_corescript, vars.corescript)
tpool.execute(vars.lua_koboldbridge.load_userscripts, filenames, modulenames, descriptions) vars.has_genmod = tpool.execute(vars.lua_koboldbridge.load_userscripts, filenames, modulenames, descriptions)
vars.lua_running = True vars.lua_running = True
except lupa.LuaError as e: except lupa.LuaError as e:
try:
vars.lua_koboldbridge.obliterate_multiverse() vars.lua_koboldbridge.obliterate_multiverse()
except:
pass
vars.lua_running = False vars.lua_running = False
if(vars.serverstarted): if(vars.serverstarted):
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error, please check console.'}, broadcast=True) emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error, please check console.'}, broadcast=True)
@ -2035,6 +2029,10 @@ def get_message(msg):
vars.rngpersist = msg['data'] vars.rngpersist = msg['data']
settingschanged() settingschanged()
refresh_settings() refresh_settings()
elif(msg['cmd'] == 'setnogenmod'):
vars.nogenmod = msg['data']
settingschanged()
refresh_settings()
elif(not vars.remote and msg['cmd'] == 'importwi'): elif(not vars.remote and msg['cmd'] == 'importwi'):
wiimportrequest() wiimportrequest()
@ -2105,6 +2103,8 @@ def savesettings():
js["dynamicscan"] = vars.dynamicscan js["dynamicscan"] = vars.dynamicscan
js["nopromptgen"] = vars.nopromptgen js["nopromptgen"] = vars.nopromptgen
js["rngpersist"] = vars.rngpersist js["rngpersist"] = vars.rngpersist
js["nogenmod"] = vars.nogenmod
js["antemplate"] = vars.setauthornotetemplate js["antemplate"] = vars.setauthornotetemplate
js["userscripts"] = vars.userscripts js["userscripts"] = vars.userscripts
@ -2170,6 +2170,8 @@ def loadsettings():
vars.nopromptgen = js["nopromptgen"] vars.nopromptgen = js["nopromptgen"]
if("rngpersist" in js): if("rngpersist" in js):
vars.rngpersist = js["rngpersist"] vars.rngpersist = js["rngpersist"]
if("nogenmod" in js):
vars.nogenmod = js["nogenmod"]
if("antemplate" in js): if("antemplate" in js):
vars.setauthornotetemplate = js["antemplate"] vars.setauthornotetemplate = js["antemplate"]
@ -2952,15 +2954,18 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
# Submit input text to generator # Submit input text to generator
try: try:
context = np.tile(np.uint32(txt), (vars.numseqs, 1))
soft_tokens = tpumtjgetsofttokens() soft_tokens = tpumtjgetsofttokens()
global past global past
if(vars.dynamicscan or (not vars.nogenmod and vars.has_genmod)):
context = np.tile(np.uint32(txt), (vars.numseqs, 1))
past = np.empty((vars.numseqs, 0), dtype=np.uint32) past = np.empty((vars.numseqs, 0), dtype=np.uint32)
while(True): while(True):
genout, n_generated, regeneration_required, halt = tpool.execute( genout, n_generated, regeneration_required, halt = tpool.execute(
tpu_mtj_backend.infer, tpu_mtj_backend.infer_dynamic,
context, context,
gen_len = maximum-minimum+1, gen_len = maximum-minimum+1,
temp=vars.temp, temp=vars.temp,
@ -3001,6 +3006,24 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
axis=-1, axis=-1,
) )
else:
genout = tpool.execute(
tpu_mtj_backend.infer_static,
np.uint32(txt),
gen_len = maximum-minimum+1,
temp=vars.temp,
top_p=vars.top_p,
top_k=vars.top_k,
tfs=vars.tfs,
numseqs=vars.numseqs,
repetition_penalty=vars.rep_pen,
soft_embeddings=vars.sp,
soft_tokens=soft_tokens,
)
past = genout
for i in range(vars.numseqs):
vars.lua_koboldbridge.generated[i+1] = vars.lua_state.table(*genout[i].tolist())
except Exception as e: except Exception as e:
if(issubclass(type(e), lupa.LuaError)): if(issubclass(type(e), lupa.LuaError)):
vars.lua_koboldbridge.obliterate_multiverse() vars.lua_koboldbridge.obliterate_multiverse()
@ -3181,6 +3204,7 @@ def refresh_settings():
emit('from_server', {'cmd': 'updatedynamicscan', 'data': vars.dynamicscan}, broadcast=True) emit('from_server', {'cmd': 'updatedynamicscan', 'data': vars.dynamicscan}, broadcast=True)
emit('from_server', {'cmd': 'updatenopromptgen', 'data': vars.nopromptgen}, broadcast=True) emit('from_server', {'cmd': 'updatenopromptgen', 'data': vars.nopromptgen}, broadcast=True)
emit('from_server', {'cmd': 'updaterngpersist', 'data': vars.rngpersist}, broadcast=True) emit('from_server', {'cmd': 'updaterngpersist', 'data': vars.rngpersist}, broadcast=True)
emit('from_server', {'cmd': 'updatenogenmod', 'data': vars.nogenmod}, broadcast=True)
emit('from_server', {'cmd': 'updatefrmttriminc', 'data': vars.formatoptns["frmttriminc"]}, broadcast=True) emit('from_server', {'cmd': 'updatefrmttriminc', 'data': vars.formatoptns["frmttriminc"]}, broadcast=True)
emit('from_server', {'cmd': 'updatefrmtrmblln', 'data': vars.formatoptns["frmtrmblln"]}, broadcast=True) emit('from_server', {'cmd': 'updatefrmtrmblln', 'data': vars.formatoptns["frmtrmblln"]}, broadcast=True)
@ -4434,6 +4458,34 @@ def randomGameRequest(topic, memory=""):
loadmodelsettings() loadmodelsettings()
loadsettings() loadsettings()
# Precompile TPU backend if required
if(vars.model in ("TPUMeshTransformerGPTJ",)):
soft_tokens = tpumtjgetsofttokens()
if(vars.dynamicscan or (not vars.nogenmod and vars.has_genmod)):
threading.Thread(
target=tpu_mtj_backend.infer_dynamic,
args=(np.tile(np.uint32((23403, 727, 20185)), (vars.numseqs, 1)),),
kwargs={
"soft_embeddings": vars.sp,
"soft_tokens": soft_tokens,
"gen_len": 1,
"use_callback": False,
"numseqs": vars.numseqs,
"excluded_world_info": list(set() for _ in range(vars.numseqs)),
},
).start()
else:
threading.Thread(
target=tpu_mtj_backend.infer_static,
args=(np.uint32((23403, 727, 20185)),),
kwargs={
"soft_embeddings": vars.sp,
"soft_tokens": soft_tokens,
"gen_len": 1,
"numseqs": vars.numseqs,
},
).start()
#==================================================================# #==================================================================#
# Final startup commands to launch Flask app # Final startup commands to launch Flask app
#==================================================================# #==================================================================#

View File

@ -1851,13 +1851,14 @@ return function(_python, _bridged)
-- API for aiserver.py -- API for aiserver.py
--========================================================================== --==========================================================================
---@return nil ---@return boolean
function koboldbridge.load_userscripts(filenames, modulenames, descriptions) function koboldbridge.load_userscripts(filenames, modulenames, descriptions)
config_files = {} config_files = {}
config_file_filename_map = {} config_file_filename_map = {}
koboldbridge.userscripts = {} koboldbridge.userscripts = {}
koboldbridge.userscriptmodule_filename_map = {} koboldbridge.userscriptmodule_filename_map = {}
koboldbridge.num_userscripts = 0 koboldbridge.num_userscripts = 0
local has_genmod = false
for i, filename in _python.enumerate(filenames) do for i, filename in _python.enumerate(filenames) do
bridged.load_callback(filename, modulenames[i]) bridged.load_callback(filename, modulenames[i])
koboldbridge.logging_name = modulenames[i] koboldbridge.logging_name = modulenames[i]
@ -1865,12 +1866,15 @@ return function(_python, _bridged)
local f, err = old_loadfile(join_folder_and_filename(bridged.userscript_path, filename), "t", koboldbridge.get_universe(filename)) local f, err = old_loadfile(join_folder_and_filename(bridged.userscript_path, filename), "t", koboldbridge.get_universe(filename))
if err ~= nil then if err ~= nil then
error(err) error(err)
return return false
end end
---@type KoboldUserScript ---@type KoboldUserScript
local _userscript = f() local _userscript = f()
koboldbridge.logging_name = nil koboldbridge.logging_name = nil
koboldbridge.filename = nil koboldbridge.filename = nil
if _userscript.genmod ~= nil then
has_genmod = true
end
local userscript = deepcopy(KoboldUserScriptModule) local userscript = deepcopy(KoboldUserScriptModule)
rawset(userscript, "_inmod", function() rawset(userscript, "_inmod", function()
koboldbridge.logging_name = modulenames[i] koboldbridge.logging_name = modulenames[i]
@ -1903,6 +1907,7 @@ return function(_python, _bridged)
koboldbridge.userscriptmodule_filename_map[userscript] = filename koboldbridge.userscriptmodule_filename_map[userscript] = filename
koboldbridge.num_userscripts = i + 1 koboldbridge.num_userscripts = i + 1
end end
return has_genmod
end end
---@return nil ---@return nil
@ -1949,7 +1954,9 @@ return function(_python, _bridged)
koboldbridge.userstate = "genmod" koboldbridge.userstate = "genmod"
if koboldbridge.genmod ~= nil then if koboldbridge.genmod ~= nil then
local _generated = deepcopy(koboldbridge.generated) local _generated = deepcopy(koboldbridge.generated)
if not bridged.vars.nogenmod then
r = koboldbridge.genmod() r = koboldbridge.genmod()
end
setmetatable(koboldbridge.logits, nil) setmetatable(koboldbridge.logits, nil)
for kr, vr in old_next, koboldbridge.logits, nil do for kr, vr in old_next, koboldbridge.logits, nil do
setmetatable(vr, nil) setmetatable(vr, nil)

View File

@ -162,6 +162,17 @@ gensettingstf = [{
"step": 1, "step": 1,
"default": 0, "default": 0,
"tooltip": "When enabled, the Memory text box in the Random Story dialog will be prefilled by default with your current story's memory instead of being empty." "tooltip": "When enabled, the Memory text box in the Random Story dialog will be prefilled by default with your current story's memory instead of being empty."
},
{
"uitype": "toggle",
"unit": "bool",
"label": "No Genmod",
"id": "setnogenmod",
"min": 0,
"max": 1,
"step": 1,
"default": 0,
"tooltip": "Disables userscript generation modifiers."
}] }]
gensettingsik =[{ gensettingsik =[{

View File

@ -2194,6 +2194,9 @@ $(document).ready(function(){
if(!$("#setrngpersist").prop("checked")) { if(!$("#setrngpersist").prop("checked")) {
$("#rngmemory").val(""); $("#rngmemory").val("");
} }
} else if(msg.cmd == "updatenogenmod") {
// Update toggle state
$("#setnogenmod").prop('checked', msg.data).change();
} else if(msg.cmd == "runs_remotely") { } else if(msg.cmd == "runs_remotely") {
remote = true; remote = true;
hide([button_savetofile, button_import, button_importwi]); hide([button_savetofile, button_import, button_importwi]);

View File

@ -17,7 +17,7 @@
<script src="static/bootstrap.min.js"></script> <script src="static/bootstrap.min.js"></script>
<script src="static/bootstrap-toggle.min.js"></script> <script src="static/bootstrap-toggle.min.js"></script>
<script src="static/rangy-core.min.js"></script> <script src="static/rangy-core.min.js"></script>
<script src="static/application.js?ver=1.16.4v"></script> <script src="static/application.js?ver=1.16.4w"></script>
</head> </head>
<body> <body>
<input type="file" id="remote-save-select" accept="application/json" style="display:none"> <input type="file" id="remote-save-select" accept="application/json" style="display:none">

View File

@ -60,7 +60,7 @@ def __batch_xmap(shard_dim=1):
return inner return inner
def apply_repetition_penalty(logits, tokens, repetition_penalty): def apply_repetition_penalty_dynamic(logits, tokens, repetition_penalty):
''' '''
This gets called by generate_loop_fn to apply repetition penalty This gets called by generate_loop_fn to apply repetition penalty
to the 1D array logits using the provided 1D array of tokens to penalize to the 1D array logits using the provided 1D array of tokens to penalize
@ -85,7 +85,7 @@ def apply_repetition_penalty(logits, tokens, repetition_penalty):
logits[tokens] = penalty_logits logits[tokens] = penalty_logits
return logits return logits
def kobold_sample(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0): def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0):
''' '''
This gets called by generate_loop_fn to apply a series of 4 filters This gets called by generate_loop_fn to apply a series of 4 filters
to the logits (top-k, then top-p, then TFS, then temperature) before to the logits (top-k, then top-p, then TFS, then temperature) before
@ -183,6 +183,127 @@ def kobold_sample(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0):
# probability distribution) # probability distribution)
return jax.random.categorical(key, logits, -1).astype(np.uint32) return jax.random.categorical(key, logits, -1).astype(np.uint32)
def apply_repetition_penalty_static(logits, tokens, repetition_penalty):
'''
This gets called by generate_loop_fn to apply repetition penalty
to the 1D array logits using the provided 1D array of tokens to penalize
'''
# Make a new array with the same length as the tokens array but with
# each element replaced by the value at the corresponding index in the
# logits array; e.g.
# if logits is [77, 5, 3, 98] and tokens is [0, 1, 2, 3, 2, 3, 1],
# then penalty_logits will be [77, 5, 3, 98, 3, 98, 5]
penalty_logits = jnp.take(logits, tokens)
# Divide positive values by repetition_penalty and multiply negative
# values by repetition_penalty (the academic publication that described
# this technique actually just only divided, but that would cause tokens
# with negative logits to become more likely, which is obviously wrong)
penalty_logits = jnp.where(
penalty_logits > 0,
penalty_logits/repetition_penalty,
penalty_logits*repetition_penalty,
)
# Finally, put those penalized logit values back into their original
# positions in the logits array
return logits.at[tokens].set(penalty_logits)
def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0):
'''
This gets called by generate_loop_fn to apply a series of 4 filters
to the logits (top-k, then top-p, then TFS, then temperature) before
picking one token using the modified logits
'''
# Top-k (keep only the k tokens with the highest logits and remove
# the rest, by setting their logits to negative infinity)
def top_k_filter(logits):
# After sorting the logits array in descending order,
# sorted_indices_to_remove is a 1D array that is True for tokens
# in the sorted logits array we want to remove and False for ones
# we want to keep, in this case the first top_k elements will be
# False and the rest will be True
sorted_indices_to_remove = jnp.arange(len(logits)) >= top_k
# Unsort the logits array back to its original configuration and
# remove tokens we need to remove
_, indices_to_remove = jax.lax.sort_key_val(
jnp.argsort(-logits),
sorted_indices_to_remove,
)
return jnp.where(indices_to_remove, -jnp.inf, logits)
logits = jax.lax.cond(top_k > 0, top_k_filter, lambda x: x, logits)
# Top-p (after sorting the remaining tokens again in descending order of
# logit, remove the ones that have cumulative softmax probability
# greater than p)
def top_p_filter(logits):
# Sort the logits array in descending order, replace every element
# with e (Euler's number) to the power of that element, and divide
# each element of the new array by the sum of the elements in the
# new array
sorted_logits = -jnp.sort(-logits)
probabilities = jax.nn.softmax(sorted_logits)
# Calculate cumulative_probabilities as the prefix-sum array of
# probabilities
cumulative_probabilities = jnp.cumsum(probabilities, axis=-1)
# We want to remove tokens with cumulative probability higher
# than top_p
sorted_indices_to_remove = cumulative_probabilities > top_p
# Don't ever remove the token with the highest logit, even if
# the probability is higher than top_p
sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False)
# Unsort and remove
_, indices_to_remove = jax.lax.sort_key_val(
jnp.argsort(-logits),
sorted_indices_to_remove,
)
return jnp.where(indices_to_remove, -jnp.inf, logits)
logits = jax.lax.cond(top_p < 1.0, top_p_filter, lambda x: x, logits)
# Tail free sampling (basically top-p a second time on remaining tokens
# except it's the "cumulative normalized absolute second finite
# differences of the softmax probabilities" instead of just the
# cumulative softmax probabilities)
def tail_free_filter(logits):
# Sort in descending order
sorted_logits = -jnp.sort(-logits)
# Softmax again
probabilities = jax.nn.softmax(sorted_logits)
# Calculate the second finite differences of that array (i.e.
# calculate the difference array and then calculate the difference
# array of the difference array)
d2 = jnp.diff(jnp.diff(probabilities))
# Get the absolute values of all those second finite differences
d2 = jnp.abs(d2)
# Normalize (all elements in the array are divided by the sum of the
# array's elements)
d2 = d2 / d2.sum(axis=-1, keepdims=True)
# Get the prefix-sum array
cumulative_d2 = jnp.cumsum(d2, axis=-1)
# We will remove the tokens with a cumulative normalized absolute
# second finite difference larger than the TFS value
sorted_indices_to_remove = cumulative_d2 > tfs
# Don't remove the token with the highest logit
sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False)
# Since the d2 array has two fewer elements than the logits array,
# we'll add two extra Trues to the end
sorted_indices_to_remove = jnp.pad(
sorted_indices_to_remove,
(0, 2),
constant_values=True,
)
# Unsort and remove
_, indices_to_remove = jax.lax.sort_key_val(
jnp.argsort(-logits),
sorted_indices_to_remove,
)
return jnp.where(indices_to_remove, -jnp.inf, logits)
logits = jax.lax.cond(tfs < 1.0, tail_free_filter, lambda x: x, logits)
# Temperature (just divide the logits by the temperature)
def temp_filter(logits):
return logits / temp
logits = jax.lax.cond(True, temp_filter, lambda x: x, logits)
# Finally, pick one token using the softmax thingy again (it gives
# an array whose elements sum to 1 so it can be used nicely as a
# probability distribution)
return jax.random.categorical(key, logits, -1).astype(jnp.uint32)
pad_token_id = 50256 pad_token_id = 50256
def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, sampler_options): def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, sampler_options):
@ -192,11 +313,11 @@ def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, sampler_op
generated, generated_index, logits, _ = carry[0][0] generated, generated_index, logits, _ = carry[0][0]
sample_key = carry[1] sample_key = carry[1]
# Get the pseudo-random number generator key that will # Get the pseudo-random number generator key that will
# be used by kobold_sample to randomly pick a token # be used by kobold_sample_dynamic to randomly pick a token
sample_key, new_key = jax.random.split(sample_key, num=2) sample_key, new_key = jax.random.split(sample_key, num=2)
# Apply repetition penalty to all tokens that are # Apply repetition penalty to all tokens that are
# currently inside the "generated" array # currently inside the "generated" array
logits = apply_repetition_penalty( logits = apply_repetition_penalty_dynamic(
logits, logits,
generated, generated,
repetition_penalty repetition_penalty
@ -205,11 +326,11 @@ def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, sampler_op
# their logits to negative infinity which effectively # their logits to negative infinity which effectively
# makes their probabilities of being chosen zero # makes their probabilities of being chosen zero
logits[badwords] = -np.inf logits[badwords] = -np.inf
# Use the sampler (kobold_sample) to pick one token # Use the sampler (kobold_sample_dynamic) to pick one token
# based on the logits array as a 0D uint32 array # based on the logits array as a 0D uint32 array
# (higher logit means higher probability of being # (higher logit means higher probability of being
# picked, non-linearly) # picked, non-linearly)
next_token = kobold_sample( next_token = kobold_sample_dynamic(
sample_key, sample_key,
logits, logits,
**sampler_options, **sampler_options,
@ -236,6 +357,100 @@ class PenalizingCausalTransformer(CausalTransformer):
def __init__(self, config): def __init__(self, config):
# Initialize # Initialize
super().__init__(config) super().__init__(config)
def generate_static(state, key, ctx, ctx_length, gen_length, numseqs_aux, sampler_options, soft_embeddings=None):
numseqs = numseqs_aux.shape[0]
# These are the tokens that we don't want the AI to ever write
self.badwords = jnp.array([6880, 50256, 42496, 4613, 17414, 22039, 16410, 27, 29, 38430, 37922, 15913, 24618, 28725, 58, 47175, 36937, 26700, 12878, 16471, 37981, 5218, 29795, 13412, 45160, 3693, 49778, 4211, 20598, 36475, 33409, 44167, 32406, 29847, 29342, 42669, 685, 25787, 7359, 3784, 5320, 33994, 33490, 34516, 43734, 17635, 24293, 9959, 23785, 21737, 28401, 18161, 26358, 32509, 1279, 38155, 18189, 26894, 6927, 14610, 23834, 11037, 14631, 26933, 46904, 22330, 25915, 47934, 38214, 1875, 14692, 41832, 13163, 25970, 29565, 44926, 19841, 37250, 49029, 9609, 44438, 16791, 17816, 30109, 41888, 47527, 42924, 23984, 49074, 33717, 31161, 49082, 30138, 31175, 12240, 14804, 7131, 26076, 33250, 3556, 38381, 36338, 32756, 46581, 17912, 49146])
@hk.transform
def generate_sample(context, ctx_length):
# Give the initial context to the transformer
transformer = CausalTransformerShard(config)
def generate_initial_scan_fn(sequence_index, _):
_, initial_state = transformer.generate_initial(context, ctx_length, soft_embeddings=soft_embeddings)
# The "generated" array will contain the tokens from the
# context as well as the tokens picked by the sampler at
# each stage, padded with a bunch of 50256s, so we know
# which tokens have to be repetition penalized
generated = jnp.pad(context, (0, config["seq"]), constant_values=pad_token_id) # Let it start off with just the 2048 context tokens, plus some 50256s which will be eventually filled with sampler-chosen tokens
generated_index = config["seq"]
# Add that information to generate_loop_fn's starting state
initial_state = (generated, generated_index, sequence_index) + initial_state
return sequence_index+1, initial_state
_, initial_states = jax.lax.scan(generate_initial_scan_fn, 0, None, numseqs)
sample_key = initial_states[-1][0]
initial_states = list(jax.tree_map(lambda x: x[i], initial_states[:-1]) for i in range(numseqs))
# Get repetition penalty from the arguments
repetition_penalty = sampler_options.pop('repetition_penalty', None)
# This is the main generation loop
def generate_loop_fn(carry):
# Unpack current generate_loop_fn state
generated, generated_index, sequence_index, next_token, decode_state = carry[0][0]
sample_key = carry[1]
# Get the pseudo-random number generator key that will
# be used by kobold_sample_static to randomly pick a token
sample_key, new_key = jax.random.split(sample_key)
# Give the context to the model and get the logits it
# spits out
# (a 2D array with 1 row and 50400 columns representing
# how strongly it thinks each of the 50257 tokens in its
# vocabulary should be appended to the context, followed
# by 143 apparently useless columns ???)
logits, new_state = transformer.generate_once(next_token, decode_state, soft_embeddings=soft_embeddings)
# Verify that logits does indeed have that many rows and
# columns (if you get an error here, pray for mercy)
assert logits.shape == (1, config["n_vocab"])
# Flatten it into a 1D array to make it easier to use
logits = logits[0]
# Apply repetition penalty to all tokens that are
# currently inside the "generated" array
if repetition_penalty is not None:
logits = apply_repetition_penalty_static(
logits,
generated,
repetition_penalty
)
# Remove any tokens in the badwords list by setting
# their logits to negative infinity which effectively
# makes their probabilities of being chosen zero
logits = logits.at[self.badwords].set(-jnp.inf)
# Use the sampler (kobold_sample_static) to pick one token
# based on the logits array as a 0D uint32 array
# (higher logit means higher probability of being
# picked, non-linearly)
next_token = kobold_sample_static(
sample_key,
logits,
**sampler_options,
)
# Remember what token was picked
generated = generated.at[generated_index].set(next_token)
generated_index += 1
# Re-pack the current generate_loop_fn's state so we can
# get back the same variables the next time
carry[0][0] = (generated, generated_index, sequence_index, next_token[jnp.newaxis], new_state)
carry[0].append(carry[0].pop(0))
return carry[0], new_key
return jax.lax.while_loop(
lambda carry: carry[0][0][1] - config["seq"] < gen_length,
generate_loop_fn,
(initial_states, sample_key),
)
return generate_sample.apply(state["params"], key, ctx, ctx_length)
self.generate_static_xmap = jax.experimental.maps.xmap(
fun=generate_static,
in_axes=(
["shard", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["batch", ...],
["shard", ...],
),
out_axes=["shard", "batch", ...],
axis_resources={'shard': 'mp', 'batch': 'dp'},
)
def generate_initial(state, key, ctx, ctx_length, numseqs_aux, soft_embeddings=None): def generate_initial(state, key, ctx, ctx_length, numseqs_aux, soft_embeddings=None):
numseqs = numseqs_aux.shape[0] numseqs = numseqs_aux.shape[0]
@hk.transform @hk.transform
@ -314,7 +529,7 @@ class PenalizingCausalTransformer(CausalTransformer):
out_axes=["shard", "batch", ...], out_axes=["shard", "batch", ...],
axis_resources={'shard': 'mp', 'batch': 'dp'}, axis_resources={'shard': 'mp', 'batch': 'dp'},
) )
def generate(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None, excluded_world_info=None, use_callback=True): def generate_dynamic(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None, excluded_world_info=None, use_callback=True):
assert excluded_world_info is not None assert excluded_world_info is not None
assert not return_logits assert not return_logits
assert gen_length.ndim == 1 assert gen_length.ndim == 1
@ -360,9 +575,24 @@ class PenalizingCausalTransformer(CausalTransformer):
else: else:
break break
return sample_data, n_generated, regeneration_required, halt return sample_data, n_generated, regeneration_required, halt
def generate_static(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None):
assert not return_logits
key = hk.PRNGSequence(random.randint(0, 2 ** 60))
batch_size = ctx.shape[0]
self.batch_size = batch_size
return self.generate_static_xmap(
self.state,
jnp.array(key.take(batch_size)),
ctx,
np.array(ctx_length, dtype=np.uint32),
np.array(gen_length, dtype=np.uint32),
np.empty((batch_size, numseqs), dtype=np.uint8),
sampler_options,
soft_embeddings,
)
def infer( def infer_dynamic(
context: np.array, context: np.array,
top_p=0.9, top_p=0.9,
temp=0.5, temp=0.5,
@ -394,7 +624,7 @@ def infer(
"repetition_penalty": float(repetition_penalty), "repetition_penalty": float(repetition_penalty),
"top_k": int(top_k), "top_k": int(top_k),
} }
output = network.generate( output = network.generate_dynamic(
batched_tokens, batched_tokens,
np.ones(total_batch, dtype=np.uint32) * provided_ctx, np.ones(total_batch, dtype=np.uint32) * provided_ctx,
np.ones(total_batch, dtype=np.uint32) * gen_len, np.ones(total_batch, dtype=np.uint32) * gen_len,
@ -408,6 +638,47 @@ def infer(
samples.append(out[0][params["seq"] : params["seq"] + gen_len]) samples.append(out[0][params["seq"] : params["seq"] + gen_len])
return (samples,) + output[1:] return (samples,) + output[1:]
def infer_static(
context: np.array,
top_p=0.9,
temp=0.5,
top_k=0,
tfs=1.0,
repetition_penalty=1.0,
numseqs=1,
gen_len=80,
soft_embeddings: Optional[np.array] = None,
soft_tokens: Optional[np.array] = None,
) -> List[np.array]:
maps.thread_resources.env = thread_resources_env
total_batch = 1
tokens = context
if(soft_tokens is not None):
tokens = np.uint32(np.concatenate((soft_tokens, tokens)))
provided_ctx = tokens.shape[0]
pad_amount = seq - provided_ctx
padded_tokens = np.pad(tokens, ((pad_amount, 0),), constant_values=pad_token_id)
batched_tokens = np.array([padded_tokens] * total_batch)
samples = []
batched_generator_params = {
"temp": temp * np.ones(total_batch),
"top_p": top_p * np.ones(total_batch),
"tfs": tfs * np.ones(total_batch),
"repetition_penalty": repetition_penalty * np.ones(total_batch),
"top_k": np.full(total_batch, top_k, dtype=np.uint32)
}
output = network.generate_static(
batched_tokens,
np.ones(total_batch, dtype=np.uint32) * provided_ctx,
np.ones(total_batch, dtype=np.uint32) * gen_len,
numseqs,
batched_generator_params,
soft_embeddings=soft_embeddings,
)[0]
for o in output:
samples.append(o[0][0, 0, params["seq"] : params["seq"] + gen_len])
return samples
def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", **kwargs) -> None: def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", **kwargs) -> None:
global thread_resources_env, seq, tokenizer, network, params global thread_resources_env, seq, tokenizer, network, params