Use original TPU backend if possible
This commit is contained in:
parent
877fa39b8a
commit
f4eb896a69
84
aiserver.py
84
aiserver.py
|
@ -157,6 +157,7 @@ class vars:
|
||||||
spmeta = None # Metadata of current soft prompt, or None if not using a soft prompt
|
spmeta = None # Metadata of current soft prompt, or None if not using a soft prompt
|
||||||
sp = None # Current soft prompt tensor (as a NumPy array)
|
sp = None # Current soft prompt tensor (as a NumPy array)
|
||||||
sp_length = 0 # Length of current soft prompt in tokens, or 0 if not using a soft prompt
|
sp_length = 0 # Length of current soft prompt in tokens, or 0 if not using a soft prompt
|
||||||
|
has_genmod = False # Whether or not at least one loaded Lua userscript has a generation modifier
|
||||||
svowname = "" # Filename that was flagged for overwrite confirm
|
svowname = "" # Filename that was flagged for overwrite confirm
|
||||||
saveow = False # Whether or not overwrite confirm has been displayed
|
saveow = False # Whether or not overwrite confirm has been displayed
|
||||||
genseqs = [] # Temporary storage for generated sequences
|
genseqs = [] # Temporary storage for generated sequences
|
||||||
|
@ -184,6 +185,7 @@ class vars:
|
||||||
remote = False
|
remote = False
|
||||||
nopromptgen = False
|
nopromptgen = False
|
||||||
rngpersist = False
|
rngpersist = False
|
||||||
|
nogenmod = False
|
||||||
|
|
||||||
#==================================================================#
|
#==================================================================#
|
||||||
# Function to get model selection at startup
|
# Function to get model selection at startup
|
||||||
|
@ -1062,19 +1064,6 @@ else:
|
||||||
vars.allowsp = True
|
vars.allowsp = True
|
||||||
vars.modeldim = int(tpu_mtj_backend.params["d_model"])
|
vars.modeldim = int(tpu_mtj_backend.params["d_model"])
|
||||||
tokenizer = tpu_mtj_backend.tokenizer
|
tokenizer = tpu_mtj_backend.tokenizer
|
||||||
soft_tokens = tpumtjgetsofttokens()
|
|
||||||
threading.Thread( # Compile backend code in background
|
|
||||||
target=tpu_mtj_backend.infer,
|
|
||||||
args=(np.tile(np.uint32((23403, 727, 20185)), (vars.numseqs, 1)),),
|
|
||||||
kwargs={
|
|
||||||
"soft_embeddings": vars.sp,
|
|
||||||
"soft_tokens": soft_tokens,
|
|
||||||
"use_callback": False,
|
|
||||||
"gen_len": 1,
|
|
||||||
"numseqs": vars.numseqs,
|
|
||||||
"excluded_world_info": list(set() for _ in range(vars.numseqs)),
|
|
||||||
},
|
|
||||||
).start()
|
|
||||||
|
|
||||||
# Set up Flask routes
|
# Set up Flask routes
|
||||||
@app.route('/')
|
@app.route('/')
|
||||||
|
@ -1182,13 +1171,18 @@ def load_lua_scripts():
|
||||||
modulenames.append(lst[i]["modulename"])
|
modulenames.append(lst[i]["modulename"])
|
||||||
descriptions.append(lst[i]["description"])
|
descriptions.append(lst[i]["description"])
|
||||||
|
|
||||||
|
vars.has_genmod = False
|
||||||
|
|
||||||
try:
|
try:
|
||||||
vars.lua_koboldbridge.obliterate_multiverse()
|
vars.lua_koboldbridge.obliterate_multiverse()
|
||||||
tpool.execute(vars.lua_koboldbridge.load_corescript, vars.corescript)
|
tpool.execute(vars.lua_koboldbridge.load_corescript, vars.corescript)
|
||||||
tpool.execute(vars.lua_koboldbridge.load_userscripts, filenames, modulenames, descriptions)
|
vars.has_genmod = tpool.execute(vars.lua_koboldbridge.load_userscripts, filenames, modulenames, descriptions)
|
||||||
vars.lua_running = True
|
vars.lua_running = True
|
||||||
except lupa.LuaError as e:
|
except lupa.LuaError as e:
|
||||||
|
try:
|
||||||
vars.lua_koboldbridge.obliterate_multiverse()
|
vars.lua_koboldbridge.obliterate_multiverse()
|
||||||
|
except:
|
||||||
|
pass
|
||||||
vars.lua_running = False
|
vars.lua_running = False
|
||||||
if(vars.serverstarted):
|
if(vars.serverstarted):
|
||||||
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error, please check console.'}, broadcast=True)
|
emit('from_server', {'cmd': 'errmsg', 'data': 'Lua script error, please check console.'}, broadcast=True)
|
||||||
|
@ -2035,6 +2029,10 @@ def get_message(msg):
|
||||||
vars.rngpersist = msg['data']
|
vars.rngpersist = msg['data']
|
||||||
settingschanged()
|
settingschanged()
|
||||||
refresh_settings()
|
refresh_settings()
|
||||||
|
elif(msg['cmd'] == 'setnogenmod'):
|
||||||
|
vars.nogenmod = msg['data']
|
||||||
|
settingschanged()
|
||||||
|
refresh_settings()
|
||||||
elif(not vars.remote and msg['cmd'] == 'importwi'):
|
elif(not vars.remote and msg['cmd'] == 'importwi'):
|
||||||
wiimportrequest()
|
wiimportrequest()
|
||||||
|
|
||||||
|
@ -2105,6 +2103,8 @@ def savesettings():
|
||||||
js["dynamicscan"] = vars.dynamicscan
|
js["dynamicscan"] = vars.dynamicscan
|
||||||
js["nopromptgen"] = vars.nopromptgen
|
js["nopromptgen"] = vars.nopromptgen
|
||||||
js["rngpersist"] = vars.rngpersist
|
js["rngpersist"] = vars.rngpersist
|
||||||
|
js["nogenmod"] = vars.nogenmod
|
||||||
|
|
||||||
js["antemplate"] = vars.setauthornotetemplate
|
js["antemplate"] = vars.setauthornotetemplate
|
||||||
|
|
||||||
js["userscripts"] = vars.userscripts
|
js["userscripts"] = vars.userscripts
|
||||||
|
@ -2170,6 +2170,8 @@ def loadsettings():
|
||||||
vars.nopromptgen = js["nopromptgen"]
|
vars.nopromptgen = js["nopromptgen"]
|
||||||
if("rngpersist" in js):
|
if("rngpersist" in js):
|
||||||
vars.rngpersist = js["rngpersist"]
|
vars.rngpersist = js["rngpersist"]
|
||||||
|
if("nogenmod" in js):
|
||||||
|
vars.nogenmod = js["nogenmod"]
|
||||||
|
|
||||||
if("antemplate" in js):
|
if("antemplate" in js):
|
||||||
vars.setauthornotetemplate = js["antemplate"]
|
vars.setauthornotetemplate = js["antemplate"]
|
||||||
|
@ -2952,15 +2954,18 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
|
||||||
|
|
||||||
# Submit input text to generator
|
# Submit input text to generator
|
||||||
try:
|
try:
|
||||||
context = np.tile(np.uint32(txt), (vars.numseqs, 1))
|
|
||||||
soft_tokens = tpumtjgetsofttokens()
|
soft_tokens = tpumtjgetsofttokens()
|
||||||
|
|
||||||
global past
|
global past
|
||||||
|
|
||||||
|
if(vars.dynamicscan or (not vars.nogenmod and vars.has_genmod)):
|
||||||
|
|
||||||
|
context = np.tile(np.uint32(txt), (vars.numseqs, 1))
|
||||||
past = np.empty((vars.numseqs, 0), dtype=np.uint32)
|
past = np.empty((vars.numseqs, 0), dtype=np.uint32)
|
||||||
|
|
||||||
while(True):
|
while(True):
|
||||||
genout, n_generated, regeneration_required, halt = tpool.execute(
|
genout, n_generated, regeneration_required, halt = tpool.execute(
|
||||||
tpu_mtj_backend.infer,
|
tpu_mtj_backend.infer_dynamic,
|
||||||
context,
|
context,
|
||||||
gen_len = maximum-minimum+1,
|
gen_len = maximum-minimum+1,
|
||||||
temp=vars.temp,
|
temp=vars.temp,
|
||||||
|
@ -3001,6 +3006,24 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
|
||||||
axis=-1,
|
axis=-1,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
genout = tpool.execute(
|
||||||
|
tpu_mtj_backend.infer_static,
|
||||||
|
np.uint32(txt),
|
||||||
|
gen_len = maximum-minimum+1,
|
||||||
|
temp=vars.temp,
|
||||||
|
top_p=vars.top_p,
|
||||||
|
top_k=vars.top_k,
|
||||||
|
tfs=vars.tfs,
|
||||||
|
numseqs=vars.numseqs,
|
||||||
|
repetition_penalty=vars.rep_pen,
|
||||||
|
soft_embeddings=vars.sp,
|
||||||
|
soft_tokens=soft_tokens,
|
||||||
|
)
|
||||||
|
past = genout
|
||||||
|
for i in range(vars.numseqs):
|
||||||
|
vars.lua_koboldbridge.generated[i+1] = vars.lua_state.table(*genout[i].tolist())
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if(issubclass(type(e), lupa.LuaError)):
|
if(issubclass(type(e), lupa.LuaError)):
|
||||||
vars.lua_koboldbridge.obliterate_multiverse()
|
vars.lua_koboldbridge.obliterate_multiverse()
|
||||||
|
@ -3181,6 +3204,7 @@ def refresh_settings():
|
||||||
emit('from_server', {'cmd': 'updatedynamicscan', 'data': vars.dynamicscan}, broadcast=True)
|
emit('from_server', {'cmd': 'updatedynamicscan', 'data': vars.dynamicscan}, broadcast=True)
|
||||||
emit('from_server', {'cmd': 'updatenopromptgen', 'data': vars.nopromptgen}, broadcast=True)
|
emit('from_server', {'cmd': 'updatenopromptgen', 'data': vars.nopromptgen}, broadcast=True)
|
||||||
emit('from_server', {'cmd': 'updaterngpersist', 'data': vars.rngpersist}, broadcast=True)
|
emit('from_server', {'cmd': 'updaterngpersist', 'data': vars.rngpersist}, broadcast=True)
|
||||||
|
emit('from_server', {'cmd': 'updatenogenmod', 'data': vars.nogenmod}, broadcast=True)
|
||||||
|
|
||||||
emit('from_server', {'cmd': 'updatefrmttriminc', 'data': vars.formatoptns["frmttriminc"]}, broadcast=True)
|
emit('from_server', {'cmd': 'updatefrmttriminc', 'data': vars.formatoptns["frmttriminc"]}, broadcast=True)
|
||||||
emit('from_server', {'cmd': 'updatefrmtrmblln', 'data': vars.formatoptns["frmtrmblln"]}, broadcast=True)
|
emit('from_server', {'cmd': 'updatefrmtrmblln', 'data': vars.formatoptns["frmtrmblln"]}, broadcast=True)
|
||||||
|
@ -4434,6 +4458,34 @@ def randomGameRequest(topic, memory=""):
|
||||||
loadmodelsettings()
|
loadmodelsettings()
|
||||||
loadsettings()
|
loadsettings()
|
||||||
|
|
||||||
|
# Precompile TPU backend if required
|
||||||
|
if(vars.model in ("TPUMeshTransformerGPTJ",)):
|
||||||
|
soft_tokens = tpumtjgetsofttokens()
|
||||||
|
if(vars.dynamicscan or (not vars.nogenmod and vars.has_genmod)):
|
||||||
|
threading.Thread(
|
||||||
|
target=tpu_mtj_backend.infer_dynamic,
|
||||||
|
args=(np.tile(np.uint32((23403, 727, 20185)), (vars.numseqs, 1)),),
|
||||||
|
kwargs={
|
||||||
|
"soft_embeddings": vars.sp,
|
||||||
|
"soft_tokens": soft_tokens,
|
||||||
|
"gen_len": 1,
|
||||||
|
"use_callback": False,
|
||||||
|
"numseqs": vars.numseqs,
|
||||||
|
"excluded_world_info": list(set() for _ in range(vars.numseqs)),
|
||||||
|
},
|
||||||
|
).start()
|
||||||
|
else:
|
||||||
|
threading.Thread(
|
||||||
|
target=tpu_mtj_backend.infer_static,
|
||||||
|
args=(np.uint32((23403, 727, 20185)),),
|
||||||
|
kwargs={
|
||||||
|
"soft_embeddings": vars.sp,
|
||||||
|
"soft_tokens": soft_tokens,
|
||||||
|
"gen_len": 1,
|
||||||
|
"numseqs": vars.numseqs,
|
||||||
|
},
|
||||||
|
).start()
|
||||||
|
|
||||||
#==================================================================#
|
#==================================================================#
|
||||||
# Final startup commands to launch Flask app
|
# Final startup commands to launch Flask app
|
||||||
#==================================================================#
|
#==================================================================#
|
||||||
|
|
11
bridge.lua
11
bridge.lua
|
@ -1851,13 +1851,14 @@ return function(_python, _bridged)
|
||||||
-- API for aiserver.py
|
-- API for aiserver.py
|
||||||
--==========================================================================
|
--==========================================================================
|
||||||
|
|
||||||
---@return nil
|
---@return boolean
|
||||||
function koboldbridge.load_userscripts(filenames, modulenames, descriptions)
|
function koboldbridge.load_userscripts(filenames, modulenames, descriptions)
|
||||||
config_files = {}
|
config_files = {}
|
||||||
config_file_filename_map = {}
|
config_file_filename_map = {}
|
||||||
koboldbridge.userscripts = {}
|
koboldbridge.userscripts = {}
|
||||||
koboldbridge.userscriptmodule_filename_map = {}
|
koboldbridge.userscriptmodule_filename_map = {}
|
||||||
koboldbridge.num_userscripts = 0
|
koboldbridge.num_userscripts = 0
|
||||||
|
local has_genmod = false
|
||||||
for i, filename in _python.enumerate(filenames) do
|
for i, filename in _python.enumerate(filenames) do
|
||||||
bridged.load_callback(filename, modulenames[i])
|
bridged.load_callback(filename, modulenames[i])
|
||||||
koboldbridge.logging_name = modulenames[i]
|
koboldbridge.logging_name = modulenames[i]
|
||||||
|
@ -1865,12 +1866,15 @@ return function(_python, _bridged)
|
||||||
local f, err = old_loadfile(join_folder_and_filename(bridged.userscript_path, filename), "t", koboldbridge.get_universe(filename))
|
local f, err = old_loadfile(join_folder_and_filename(bridged.userscript_path, filename), "t", koboldbridge.get_universe(filename))
|
||||||
if err ~= nil then
|
if err ~= nil then
|
||||||
error(err)
|
error(err)
|
||||||
return
|
return false
|
||||||
end
|
end
|
||||||
---@type KoboldUserScript
|
---@type KoboldUserScript
|
||||||
local _userscript = f()
|
local _userscript = f()
|
||||||
koboldbridge.logging_name = nil
|
koboldbridge.logging_name = nil
|
||||||
koboldbridge.filename = nil
|
koboldbridge.filename = nil
|
||||||
|
if _userscript.genmod ~= nil then
|
||||||
|
has_genmod = true
|
||||||
|
end
|
||||||
local userscript = deepcopy(KoboldUserScriptModule)
|
local userscript = deepcopy(KoboldUserScriptModule)
|
||||||
rawset(userscript, "_inmod", function()
|
rawset(userscript, "_inmod", function()
|
||||||
koboldbridge.logging_name = modulenames[i]
|
koboldbridge.logging_name = modulenames[i]
|
||||||
|
@ -1903,6 +1907,7 @@ return function(_python, _bridged)
|
||||||
koboldbridge.userscriptmodule_filename_map[userscript] = filename
|
koboldbridge.userscriptmodule_filename_map[userscript] = filename
|
||||||
koboldbridge.num_userscripts = i + 1
|
koboldbridge.num_userscripts = i + 1
|
||||||
end
|
end
|
||||||
|
return has_genmod
|
||||||
end
|
end
|
||||||
|
|
||||||
---@return nil
|
---@return nil
|
||||||
|
@ -1949,7 +1954,9 @@ return function(_python, _bridged)
|
||||||
koboldbridge.userstate = "genmod"
|
koboldbridge.userstate = "genmod"
|
||||||
if koboldbridge.genmod ~= nil then
|
if koboldbridge.genmod ~= nil then
|
||||||
local _generated = deepcopy(koboldbridge.generated)
|
local _generated = deepcopy(koboldbridge.generated)
|
||||||
|
if not bridged.vars.nogenmod then
|
||||||
r = koboldbridge.genmod()
|
r = koboldbridge.genmod()
|
||||||
|
end
|
||||||
setmetatable(koboldbridge.logits, nil)
|
setmetatable(koboldbridge.logits, nil)
|
||||||
for kr, vr in old_next, koboldbridge.logits, nil do
|
for kr, vr in old_next, koboldbridge.logits, nil do
|
||||||
setmetatable(vr, nil)
|
setmetatable(vr, nil)
|
||||||
|
|
|
@ -162,6 +162,17 @@ gensettingstf = [{
|
||||||
"step": 1,
|
"step": 1,
|
||||||
"default": 0,
|
"default": 0,
|
||||||
"tooltip": "When enabled, the Memory text box in the Random Story dialog will be prefilled by default with your current story's memory instead of being empty."
|
"tooltip": "When enabled, the Memory text box in the Random Story dialog will be prefilled by default with your current story's memory instead of being empty."
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"uitype": "toggle",
|
||||||
|
"unit": "bool",
|
||||||
|
"label": "No Genmod",
|
||||||
|
"id": "setnogenmod",
|
||||||
|
"min": 0,
|
||||||
|
"max": 1,
|
||||||
|
"step": 1,
|
||||||
|
"default": 0,
|
||||||
|
"tooltip": "Disables userscript generation modifiers."
|
||||||
}]
|
}]
|
||||||
|
|
||||||
gensettingsik =[{
|
gensettingsik =[{
|
||||||
|
|
|
@ -2194,6 +2194,9 @@ $(document).ready(function(){
|
||||||
if(!$("#setrngpersist").prop("checked")) {
|
if(!$("#setrngpersist").prop("checked")) {
|
||||||
$("#rngmemory").val("");
|
$("#rngmemory").val("");
|
||||||
}
|
}
|
||||||
|
} else if(msg.cmd == "updatenogenmod") {
|
||||||
|
// Update toggle state
|
||||||
|
$("#setnogenmod").prop('checked', msg.data).change();
|
||||||
} else if(msg.cmd == "runs_remotely") {
|
} else if(msg.cmd == "runs_remotely") {
|
||||||
remote = true;
|
remote = true;
|
||||||
hide([button_savetofile, button_import, button_importwi]);
|
hide([button_savetofile, button_import, button_importwi]);
|
||||||
|
|
|
@ -17,7 +17,7 @@
|
||||||
<script src="static/bootstrap.min.js"></script>
|
<script src="static/bootstrap.min.js"></script>
|
||||||
<script src="static/bootstrap-toggle.min.js"></script>
|
<script src="static/bootstrap-toggle.min.js"></script>
|
||||||
<script src="static/rangy-core.min.js"></script>
|
<script src="static/rangy-core.min.js"></script>
|
||||||
<script src="static/application.js?ver=1.16.4v"></script>
|
<script src="static/application.js?ver=1.16.4w"></script>
|
||||||
</head>
|
</head>
|
||||||
<body>
|
<body>
|
||||||
<input type="file" id="remote-save-select" accept="application/json" style="display:none">
|
<input type="file" id="remote-save-select" accept="application/json" style="display:none">
|
||||||
|
|
|
@ -60,7 +60,7 @@ def __batch_xmap(shard_dim=1):
|
||||||
return inner
|
return inner
|
||||||
|
|
||||||
|
|
||||||
def apply_repetition_penalty(logits, tokens, repetition_penalty):
|
def apply_repetition_penalty_dynamic(logits, tokens, repetition_penalty):
|
||||||
'''
|
'''
|
||||||
This gets called by generate_loop_fn to apply repetition penalty
|
This gets called by generate_loop_fn to apply repetition penalty
|
||||||
to the 1D array logits using the provided 1D array of tokens to penalize
|
to the 1D array logits using the provided 1D array of tokens to penalize
|
||||||
|
@ -85,7 +85,7 @@ def apply_repetition_penalty(logits, tokens, repetition_penalty):
|
||||||
logits[tokens] = penalty_logits
|
logits[tokens] = penalty_logits
|
||||||
return logits
|
return logits
|
||||||
|
|
||||||
def kobold_sample(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0):
|
def kobold_sample_dynamic(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0):
|
||||||
'''
|
'''
|
||||||
This gets called by generate_loop_fn to apply a series of 4 filters
|
This gets called by generate_loop_fn to apply a series of 4 filters
|
||||||
to the logits (top-k, then top-p, then TFS, then temperature) before
|
to the logits (top-k, then top-p, then TFS, then temperature) before
|
||||||
|
@ -183,6 +183,127 @@ def kobold_sample(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0):
|
||||||
# probability distribution)
|
# probability distribution)
|
||||||
return jax.random.categorical(key, logits, -1).astype(np.uint32)
|
return jax.random.categorical(key, logits, -1).astype(np.uint32)
|
||||||
|
|
||||||
|
def apply_repetition_penalty_static(logits, tokens, repetition_penalty):
|
||||||
|
'''
|
||||||
|
This gets called by generate_loop_fn to apply repetition penalty
|
||||||
|
to the 1D array logits using the provided 1D array of tokens to penalize
|
||||||
|
'''
|
||||||
|
# Make a new array with the same length as the tokens array but with
|
||||||
|
# each element replaced by the value at the corresponding index in the
|
||||||
|
# logits array; e.g.
|
||||||
|
# if logits is [77, 5, 3, 98] and tokens is [0, 1, 2, 3, 2, 3, 1],
|
||||||
|
# then penalty_logits will be [77, 5, 3, 98, 3, 98, 5]
|
||||||
|
penalty_logits = jnp.take(logits, tokens)
|
||||||
|
# Divide positive values by repetition_penalty and multiply negative
|
||||||
|
# values by repetition_penalty (the academic publication that described
|
||||||
|
# this technique actually just only divided, but that would cause tokens
|
||||||
|
# with negative logits to become more likely, which is obviously wrong)
|
||||||
|
penalty_logits = jnp.where(
|
||||||
|
penalty_logits > 0,
|
||||||
|
penalty_logits/repetition_penalty,
|
||||||
|
penalty_logits*repetition_penalty,
|
||||||
|
)
|
||||||
|
# Finally, put those penalized logit values back into their original
|
||||||
|
# positions in the logits array
|
||||||
|
return logits.at[tokens].set(penalty_logits)
|
||||||
|
|
||||||
|
def kobold_sample_static(key, logits, top_p=0.9, temp=0.5, top_k=0, tfs=1.0):
|
||||||
|
'''
|
||||||
|
This gets called by generate_loop_fn to apply a series of 4 filters
|
||||||
|
to the logits (top-k, then top-p, then TFS, then temperature) before
|
||||||
|
picking one token using the modified logits
|
||||||
|
'''
|
||||||
|
# Top-k (keep only the k tokens with the highest logits and remove
|
||||||
|
# the rest, by setting their logits to negative infinity)
|
||||||
|
def top_k_filter(logits):
|
||||||
|
# After sorting the logits array in descending order,
|
||||||
|
# sorted_indices_to_remove is a 1D array that is True for tokens
|
||||||
|
# in the sorted logits array we want to remove and False for ones
|
||||||
|
# we want to keep, in this case the first top_k elements will be
|
||||||
|
# False and the rest will be True
|
||||||
|
sorted_indices_to_remove = jnp.arange(len(logits)) >= top_k
|
||||||
|
# Unsort the logits array back to its original configuration and
|
||||||
|
# remove tokens we need to remove
|
||||||
|
_, indices_to_remove = jax.lax.sort_key_val(
|
||||||
|
jnp.argsort(-logits),
|
||||||
|
sorted_indices_to_remove,
|
||||||
|
)
|
||||||
|
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||||
|
logits = jax.lax.cond(top_k > 0, top_k_filter, lambda x: x, logits)
|
||||||
|
# Top-p (after sorting the remaining tokens again in descending order of
|
||||||
|
# logit, remove the ones that have cumulative softmax probability
|
||||||
|
# greater than p)
|
||||||
|
def top_p_filter(logits):
|
||||||
|
# Sort the logits array in descending order, replace every element
|
||||||
|
# with e (Euler's number) to the power of that element, and divide
|
||||||
|
# each element of the new array by the sum of the elements in the
|
||||||
|
# new array
|
||||||
|
sorted_logits = -jnp.sort(-logits)
|
||||||
|
probabilities = jax.nn.softmax(sorted_logits)
|
||||||
|
# Calculate cumulative_probabilities as the prefix-sum array of
|
||||||
|
# probabilities
|
||||||
|
cumulative_probabilities = jnp.cumsum(probabilities, axis=-1)
|
||||||
|
# We want to remove tokens with cumulative probability higher
|
||||||
|
# than top_p
|
||||||
|
sorted_indices_to_remove = cumulative_probabilities > top_p
|
||||||
|
# Don't ever remove the token with the highest logit, even if
|
||||||
|
# the probability is higher than top_p
|
||||||
|
sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False)
|
||||||
|
# Unsort and remove
|
||||||
|
_, indices_to_remove = jax.lax.sort_key_val(
|
||||||
|
jnp.argsort(-logits),
|
||||||
|
sorted_indices_to_remove,
|
||||||
|
)
|
||||||
|
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||||
|
logits = jax.lax.cond(top_p < 1.0, top_p_filter, lambda x: x, logits)
|
||||||
|
# Tail free sampling (basically top-p a second time on remaining tokens
|
||||||
|
# except it's the "cumulative normalized absolute second finite
|
||||||
|
# differences of the softmax probabilities" instead of just the
|
||||||
|
# cumulative softmax probabilities)
|
||||||
|
def tail_free_filter(logits):
|
||||||
|
# Sort in descending order
|
||||||
|
sorted_logits = -jnp.sort(-logits)
|
||||||
|
# Softmax again
|
||||||
|
probabilities = jax.nn.softmax(sorted_logits)
|
||||||
|
# Calculate the second finite differences of that array (i.e.
|
||||||
|
# calculate the difference array and then calculate the difference
|
||||||
|
# array of the difference array)
|
||||||
|
d2 = jnp.diff(jnp.diff(probabilities))
|
||||||
|
# Get the absolute values of all those second finite differences
|
||||||
|
d2 = jnp.abs(d2)
|
||||||
|
# Normalize (all elements in the array are divided by the sum of the
|
||||||
|
# array's elements)
|
||||||
|
d2 = d2 / d2.sum(axis=-1, keepdims=True)
|
||||||
|
# Get the prefix-sum array
|
||||||
|
cumulative_d2 = jnp.cumsum(d2, axis=-1)
|
||||||
|
# We will remove the tokens with a cumulative normalized absolute
|
||||||
|
# second finite difference larger than the TFS value
|
||||||
|
sorted_indices_to_remove = cumulative_d2 > tfs
|
||||||
|
# Don't remove the token with the highest logit
|
||||||
|
sorted_indices_to_remove = sorted_indices_to_remove.at[0].set(False)
|
||||||
|
# Since the d2 array has two fewer elements than the logits array,
|
||||||
|
# we'll add two extra Trues to the end
|
||||||
|
sorted_indices_to_remove = jnp.pad(
|
||||||
|
sorted_indices_to_remove,
|
||||||
|
(0, 2),
|
||||||
|
constant_values=True,
|
||||||
|
)
|
||||||
|
# Unsort and remove
|
||||||
|
_, indices_to_remove = jax.lax.sort_key_val(
|
||||||
|
jnp.argsort(-logits),
|
||||||
|
sorted_indices_to_remove,
|
||||||
|
)
|
||||||
|
return jnp.where(indices_to_remove, -jnp.inf, logits)
|
||||||
|
logits = jax.lax.cond(tfs < 1.0, tail_free_filter, lambda x: x, logits)
|
||||||
|
# Temperature (just divide the logits by the temperature)
|
||||||
|
def temp_filter(logits):
|
||||||
|
return logits / temp
|
||||||
|
logits = jax.lax.cond(True, temp_filter, lambda x: x, logits)
|
||||||
|
# Finally, pick one token using the softmax thingy again (it gives
|
||||||
|
# an array whose elements sum to 1 so it can be used nicely as a
|
||||||
|
# probability distribution)
|
||||||
|
return jax.random.categorical(key, logits, -1).astype(jnp.uint32)
|
||||||
|
|
||||||
pad_token_id = 50256
|
pad_token_id = 50256
|
||||||
|
|
||||||
def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, sampler_options):
|
def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, sampler_options):
|
||||||
|
@ -192,11 +313,11 @@ def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, sampler_op
|
||||||
generated, generated_index, logits, _ = carry[0][0]
|
generated, generated_index, logits, _ = carry[0][0]
|
||||||
sample_key = carry[1]
|
sample_key = carry[1]
|
||||||
# Get the pseudo-random number generator key that will
|
# Get the pseudo-random number generator key that will
|
||||||
# be used by kobold_sample to randomly pick a token
|
# be used by kobold_sample_dynamic to randomly pick a token
|
||||||
sample_key, new_key = jax.random.split(sample_key, num=2)
|
sample_key, new_key = jax.random.split(sample_key, num=2)
|
||||||
# Apply repetition penalty to all tokens that are
|
# Apply repetition penalty to all tokens that are
|
||||||
# currently inside the "generated" array
|
# currently inside the "generated" array
|
||||||
logits = apply_repetition_penalty(
|
logits = apply_repetition_penalty_dynamic(
|
||||||
logits,
|
logits,
|
||||||
generated,
|
generated,
|
||||||
repetition_penalty
|
repetition_penalty
|
||||||
|
@ -205,11 +326,11 @@ def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, sampler_op
|
||||||
# their logits to negative infinity which effectively
|
# their logits to negative infinity which effectively
|
||||||
# makes their probabilities of being chosen zero
|
# makes their probabilities of being chosen zero
|
||||||
logits[badwords] = -np.inf
|
logits[badwords] = -np.inf
|
||||||
# Use the sampler (kobold_sample) to pick one token
|
# Use the sampler (kobold_sample_dynamic) to pick one token
|
||||||
# based on the logits array as a 0D uint32 array
|
# based on the logits array as a 0D uint32 array
|
||||||
# (higher logit means higher probability of being
|
# (higher logit means higher probability of being
|
||||||
# picked, non-linearly)
|
# picked, non-linearly)
|
||||||
next_token = kobold_sample(
|
next_token = kobold_sample_dynamic(
|
||||||
sample_key,
|
sample_key,
|
||||||
logits,
|
logits,
|
||||||
**sampler_options,
|
**sampler_options,
|
||||||
|
@ -236,6 +357,100 @@ class PenalizingCausalTransformer(CausalTransformer):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
# Initialize
|
# Initialize
|
||||||
super().__init__(config)
|
super().__init__(config)
|
||||||
|
def generate_static(state, key, ctx, ctx_length, gen_length, numseqs_aux, sampler_options, soft_embeddings=None):
|
||||||
|
numseqs = numseqs_aux.shape[0]
|
||||||
|
# These are the tokens that we don't want the AI to ever write
|
||||||
|
self.badwords = jnp.array([6880, 50256, 42496, 4613, 17414, 22039, 16410, 27, 29, 38430, 37922, 15913, 24618, 28725, 58, 47175, 36937, 26700, 12878, 16471, 37981, 5218, 29795, 13412, 45160, 3693, 49778, 4211, 20598, 36475, 33409, 44167, 32406, 29847, 29342, 42669, 685, 25787, 7359, 3784, 5320, 33994, 33490, 34516, 43734, 17635, 24293, 9959, 23785, 21737, 28401, 18161, 26358, 32509, 1279, 38155, 18189, 26894, 6927, 14610, 23834, 11037, 14631, 26933, 46904, 22330, 25915, 47934, 38214, 1875, 14692, 41832, 13163, 25970, 29565, 44926, 19841, 37250, 49029, 9609, 44438, 16791, 17816, 30109, 41888, 47527, 42924, 23984, 49074, 33717, 31161, 49082, 30138, 31175, 12240, 14804, 7131, 26076, 33250, 3556, 38381, 36338, 32756, 46581, 17912, 49146])
|
||||||
|
@hk.transform
|
||||||
|
def generate_sample(context, ctx_length):
|
||||||
|
# Give the initial context to the transformer
|
||||||
|
transformer = CausalTransformerShard(config)
|
||||||
|
def generate_initial_scan_fn(sequence_index, _):
|
||||||
|
_, initial_state = transformer.generate_initial(context, ctx_length, soft_embeddings=soft_embeddings)
|
||||||
|
# The "generated" array will contain the tokens from the
|
||||||
|
# context as well as the tokens picked by the sampler at
|
||||||
|
# each stage, padded with a bunch of 50256s, so we know
|
||||||
|
# which tokens have to be repetition penalized
|
||||||
|
generated = jnp.pad(context, (0, config["seq"]), constant_values=pad_token_id) # Let it start off with just the 2048 context tokens, plus some 50256s which will be eventually filled with sampler-chosen tokens
|
||||||
|
generated_index = config["seq"]
|
||||||
|
# Add that information to generate_loop_fn's starting state
|
||||||
|
initial_state = (generated, generated_index, sequence_index) + initial_state
|
||||||
|
return sequence_index+1, initial_state
|
||||||
|
_, initial_states = jax.lax.scan(generate_initial_scan_fn, 0, None, numseqs)
|
||||||
|
sample_key = initial_states[-1][0]
|
||||||
|
initial_states = list(jax.tree_map(lambda x: x[i], initial_states[:-1]) for i in range(numseqs))
|
||||||
|
# Get repetition penalty from the arguments
|
||||||
|
repetition_penalty = sampler_options.pop('repetition_penalty', None)
|
||||||
|
# This is the main generation loop
|
||||||
|
def generate_loop_fn(carry):
|
||||||
|
# Unpack current generate_loop_fn state
|
||||||
|
generated, generated_index, sequence_index, next_token, decode_state = carry[0][0]
|
||||||
|
sample_key = carry[1]
|
||||||
|
# Get the pseudo-random number generator key that will
|
||||||
|
# be used by kobold_sample_static to randomly pick a token
|
||||||
|
sample_key, new_key = jax.random.split(sample_key)
|
||||||
|
# Give the context to the model and get the logits it
|
||||||
|
# spits out
|
||||||
|
# (a 2D array with 1 row and 50400 columns representing
|
||||||
|
# how strongly it thinks each of the 50257 tokens in its
|
||||||
|
# vocabulary should be appended to the context, followed
|
||||||
|
# by 143 apparently useless columns ???)
|
||||||
|
logits, new_state = transformer.generate_once(next_token, decode_state, soft_embeddings=soft_embeddings)
|
||||||
|
# Verify that logits does indeed have that many rows and
|
||||||
|
# columns (if you get an error here, pray for mercy)
|
||||||
|
assert logits.shape == (1, config["n_vocab"])
|
||||||
|
# Flatten it into a 1D array to make it easier to use
|
||||||
|
logits = logits[0]
|
||||||
|
# Apply repetition penalty to all tokens that are
|
||||||
|
# currently inside the "generated" array
|
||||||
|
if repetition_penalty is not None:
|
||||||
|
logits = apply_repetition_penalty_static(
|
||||||
|
logits,
|
||||||
|
generated,
|
||||||
|
repetition_penalty
|
||||||
|
)
|
||||||
|
# Remove any tokens in the badwords list by setting
|
||||||
|
# their logits to negative infinity which effectively
|
||||||
|
# makes their probabilities of being chosen zero
|
||||||
|
logits = logits.at[self.badwords].set(-jnp.inf)
|
||||||
|
# Use the sampler (kobold_sample_static) to pick one token
|
||||||
|
# based on the logits array as a 0D uint32 array
|
||||||
|
# (higher logit means higher probability of being
|
||||||
|
# picked, non-linearly)
|
||||||
|
next_token = kobold_sample_static(
|
||||||
|
sample_key,
|
||||||
|
logits,
|
||||||
|
**sampler_options,
|
||||||
|
)
|
||||||
|
# Remember what token was picked
|
||||||
|
generated = generated.at[generated_index].set(next_token)
|
||||||
|
generated_index += 1
|
||||||
|
# Re-pack the current generate_loop_fn's state so we can
|
||||||
|
# get back the same variables the next time
|
||||||
|
carry[0][0] = (generated, generated_index, sequence_index, next_token[jnp.newaxis], new_state)
|
||||||
|
carry[0].append(carry[0].pop(0))
|
||||||
|
return carry[0], new_key
|
||||||
|
return jax.lax.while_loop(
|
||||||
|
lambda carry: carry[0][0][1] - config["seq"] < gen_length,
|
||||||
|
generate_loop_fn,
|
||||||
|
(initial_states, sample_key),
|
||||||
|
)
|
||||||
|
return generate_sample.apply(state["params"], key, ctx, ctx_length)
|
||||||
|
self.generate_static_xmap = jax.experimental.maps.xmap(
|
||||||
|
fun=generate_static,
|
||||||
|
in_axes=(
|
||||||
|
["shard", ...],
|
||||||
|
["batch", ...],
|
||||||
|
["batch", ...],
|
||||||
|
["batch", ...],
|
||||||
|
["batch", ...],
|
||||||
|
["batch", ...],
|
||||||
|
["batch", ...],
|
||||||
|
["shard", ...],
|
||||||
|
),
|
||||||
|
out_axes=["shard", "batch", ...],
|
||||||
|
axis_resources={'shard': 'mp', 'batch': 'dp'},
|
||||||
|
)
|
||||||
def generate_initial(state, key, ctx, ctx_length, numseqs_aux, soft_embeddings=None):
|
def generate_initial(state, key, ctx, ctx_length, numseqs_aux, soft_embeddings=None):
|
||||||
numseqs = numseqs_aux.shape[0]
|
numseqs = numseqs_aux.shape[0]
|
||||||
@hk.transform
|
@hk.transform
|
||||||
|
@ -314,7 +529,7 @@ class PenalizingCausalTransformer(CausalTransformer):
|
||||||
out_axes=["shard", "batch", ...],
|
out_axes=["shard", "batch", ...],
|
||||||
axis_resources={'shard': 'mp', 'batch': 'dp'},
|
axis_resources={'shard': 'mp', 'batch': 'dp'},
|
||||||
)
|
)
|
||||||
def generate(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None, excluded_world_info=None, use_callback=True):
|
def generate_dynamic(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None, excluded_world_info=None, use_callback=True):
|
||||||
assert excluded_world_info is not None
|
assert excluded_world_info is not None
|
||||||
assert not return_logits
|
assert not return_logits
|
||||||
assert gen_length.ndim == 1
|
assert gen_length.ndim == 1
|
||||||
|
@ -360,9 +575,24 @@ class PenalizingCausalTransformer(CausalTransformer):
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
return sample_data, n_generated, regeneration_required, halt
|
return sample_data, n_generated, regeneration_required, halt
|
||||||
|
def generate_static(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None):
|
||||||
|
assert not return_logits
|
||||||
|
key = hk.PRNGSequence(random.randint(0, 2 ** 60))
|
||||||
|
batch_size = ctx.shape[0]
|
||||||
|
self.batch_size = batch_size
|
||||||
|
return self.generate_static_xmap(
|
||||||
|
self.state,
|
||||||
|
jnp.array(key.take(batch_size)),
|
||||||
|
ctx,
|
||||||
|
np.array(ctx_length, dtype=np.uint32),
|
||||||
|
np.array(gen_length, dtype=np.uint32),
|
||||||
|
np.empty((batch_size, numseqs), dtype=np.uint8),
|
||||||
|
sampler_options,
|
||||||
|
soft_embeddings,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def infer(
|
def infer_dynamic(
|
||||||
context: np.array,
|
context: np.array,
|
||||||
top_p=0.9,
|
top_p=0.9,
|
||||||
temp=0.5,
|
temp=0.5,
|
||||||
|
@ -394,7 +624,7 @@ def infer(
|
||||||
"repetition_penalty": float(repetition_penalty),
|
"repetition_penalty": float(repetition_penalty),
|
||||||
"top_k": int(top_k),
|
"top_k": int(top_k),
|
||||||
}
|
}
|
||||||
output = network.generate(
|
output = network.generate_dynamic(
|
||||||
batched_tokens,
|
batched_tokens,
|
||||||
np.ones(total_batch, dtype=np.uint32) * provided_ctx,
|
np.ones(total_batch, dtype=np.uint32) * provided_ctx,
|
||||||
np.ones(total_batch, dtype=np.uint32) * gen_len,
|
np.ones(total_batch, dtype=np.uint32) * gen_len,
|
||||||
|
@ -408,6 +638,47 @@ def infer(
|
||||||
samples.append(out[0][params["seq"] : params["seq"] + gen_len])
|
samples.append(out[0][params["seq"] : params["seq"] + gen_len])
|
||||||
return (samples,) + output[1:]
|
return (samples,) + output[1:]
|
||||||
|
|
||||||
|
def infer_static(
|
||||||
|
context: np.array,
|
||||||
|
top_p=0.9,
|
||||||
|
temp=0.5,
|
||||||
|
top_k=0,
|
||||||
|
tfs=1.0,
|
||||||
|
repetition_penalty=1.0,
|
||||||
|
numseqs=1,
|
||||||
|
gen_len=80,
|
||||||
|
soft_embeddings: Optional[np.array] = None,
|
||||||
|
soft_tokens: Optional[np.array] = None,
|
||||||
|
) -> List[np.array]:
|
||||||
|
maps.thread_resources.env = thread_resources_env
|
||||||
|
total_batch = 1
|
||||||
|
tokens = context
|
||||||
|
if(soft_tokens is not None):
|
||||||
|
tokens = np.uint32(np.concatenate((soft_tokens, tokens)))
|
||||||
|
provided_ctx = tokens.shape[0]
|
||||||
|
pad_amount = seq - provided_ctx
|
||||||
|
padded_tokens = np.pad(tokens, ((pad_amount, 0),), constant_values=pad_token_id)
|
||||||
|
batched_tokens = np.array([padded_tokens] * total_batch)
|
||||||
|
samples = []
|
||||||
|
batched_generator_params = {
|
||||||
|
"temp": temp * np.ones(total_batch),
|
||||||
|
"top_p": top_p * np.ones(total_batch),
|
||||||
|
"tfs": tfs * np.ones(total_batch),
|
||||||
|
"repetition_penalty": repetition_penalty * np.ones(total_batch),
|
||||||
|
"top_k": np.full(total_batch, top_k, dtype=np.uint32)
|
||||||
|
}
|
||||||
|
output = network.generate_static(
|
||||||
|
batched_tokens,
|
||||||
|
np.ones(total_batch, dtype=np.uint32) * provided_ctx,
|
||||||
|
np.ones(total_batch, dtype=np.uint32) * gen_len,
|
||||||
|
numseqs,
|
||||||
|
batched_generator_params,
|
||||||
|
soft_embeddings=soft_embeddings,
|
||||||
|
)[0]
|
||||||
|
for o in output:
|
||||||
|
samples.append(o[0][0, 0, params["seq"] : params["seq"] + gen_len])
|
||||||
|
return samples
|
||||||
|
|
||||||
|
|
||||||
def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", **kwargs) -> None:
|
def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", **kwargs) -> None:
|
||||||
global thread_resources_env, seq, tokenizer, network, params
|
global thread_resources_env, seq, tokenizer, network, params
|
||||||
|
|
Loading…
Reference in New Issue