mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Arg Revision Workaround for TPU
This commit is contained in:
@@ -1461,48 +1461,48 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
|||||||
with torch_lazy_loader.use_lazy_torch_load(callback=callback, dematerialized_modules=True):
|
with torch_lazy_loader.use_lazy_torch_load(callback=callback, dematerialized_modules=True):
|
||||||
if(os.path.isdir(koboldai_vars.custmodpth)):
|
if(os.path.isdir(koboldai_vars.custmodpth)):
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache", use_fast=False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache")
|
||||||
try:
|
try:
|
||||||
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache")
|
||||||
elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))):
|
elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))):
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache", use_fast=False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache")
|
||||||
try:
|
try:
|
||||||
model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache")
|
||||||
else:
|
else:
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache", use_fast=False)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
try:
|
try:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache")
|
||||||
try:
|
try:
|
||||||
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache")
|
||||||
|
|
||||||
#network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))
|
#network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))
|
||||||
|
Reference in New Issue
Block a user