Add soft prompt support to TPU backend

This commit is contained in:
Gnome Ann
2021-11-21 18:08:04 -05:00
parent a60e7d3310
commit e068aa9f26
2 changed files with 62 additions and 16 deletions

View File

@ -108,6 +108,7 @@ class vars:
loadselect = "" # Temporary storage for story filename to load
spselect = "" # Temporary storage for soft prompt filename to load
sp = None # Current soft prompt tensor (as a NumPy array)
sp_length = 0 # Length of current soft prompt in tokens, or 0 if not using a soft prompt
svowname = "" # Filename that was flagged for overwrite confirm
saveow = False # Whether or not overwrite confirm has been displayed
genseqs = [] # Temporary storage for generated sequences
@ -700,6 +701,8 @@ else:
assert vars.model == "TPUMeshTransformerGPTJ" and vars.custmodpth and os.path.isdir(vars.custmodpth)
import tpu_mtj_backend
tpu_mtj_backend.load_model(vars.custmodpth)
vars.allowsp = True
vars.modeldim = int(tpu_mtj_backend.params["d_model"])
tokenizer = tpu_mtj_backend.tokenizer
# Set up Flask routes
@ -1684,10 +1687,17 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
# Submit input text to generator
try:
if(vars.sp is not None):
raise ValueError("Softprompts are not supported by the TPU backend yet")
if(vars.dynamicscan):
raise ValueError("Dynamic world info scanning is not supported by the TPU backend yet")
soft_tokens = None
if(vars.sp is not None):
soft_tokens = np.arange(
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"],
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"] + vars.sp_length,
dtype=np.uint32
)
genout = tpu_mtj_backend.infer(
txt,
gen_len = maximum-minimum+1,
@ -1697,6 +1707,8 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
tfs=vars.tfs,
numseqs=vars.numseqs,
repetition_penalty=vars.rep_pen,
soft_embeddings=vars.sp,
soft_tokens=soft_tokens,
)
except Exception as e:
@ -2525,6 +2537,7 @@ def loadRequest(loadpath, filename=None):
def spRequest(filename):
if(len(filename) == 0):
vars.sp = None
vars.sp_length = 0
return
global np
@ -2548,7 +2561,20 @@ def spRequest(filename):
tensor = np.float32(tensor)
assert not np.isinf(tensor).any() and not np.isnan(tensor).any()
vars.sp = torch.from_numpy(tensor)
vars.sp_length = tensor.shape[0]
if(vars.model in ("TPUMeshTransformerGPTJ",)):
rows = tensor.shape[0]
padding_amount = -(rows % -tpu_mtj_backend.params["cores_per_replica"])
tensor = np.pad(tensor, ((0, padding_amount), (0, 0)))
tensor = tensor.reshape(
tpu_mtj_backend.params["cores_per_replica"],
-1,
tpu_mtj_backend.params["d_model"],
)
vars.sp = tensor
else:
vars.sp = torch.from_numpy(tensor)
#==================================================================#
# Import an AIDungon game exported with Mimi's tool