mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Fix for Colab
This commit is contained in:
48
aiserver.py
48
aiserver.py
@ -931,7 +931,31 @@ def general_startup():
|
|||||||
|
|
||||||
#==================================================================#
|
#==================================================================#
|
||||||
# Load Model
|
# Load Model
|
||||||
#==================================================================#
|
#==================================================================#
|
||||||
|
|
||||||
|
def tpumtjgetsofttokens():
|
||||||
|
soft_tokens = None
|
||||||
|
if(vars.sp is None):
|
||||||
|
global np
|
||||||
|
if 'np' not in globals():
|
||||||
|
import numpy as np
|
||||||
|
tensor = np.zeros((1, tpu_mtj_backend.params.get("d_embed", tpu_mtj_backend.params["d_model"])), dtype=np.float32)
|
||||||
|
rows = tensor.shape[0]
|
||||||
|
padding_amount = tpu_mtj_backend.params["seq"] - (tpu_mtj_backend.params["seq"] % -tpu_mtj_backend.params["cores_per_replica"]) - rows
|
||||||
|
tensor = np.pad(tensor, ((0, padding_amount), (0, 0)))
|
||||||
|
tensor = tensor.reshape(
|
||||||
|
tpu_mtj_backend.params["cores_per_replica"],
|
||||||
|
-1,
|
||||||
|
tpu_mtj_backend.params.get("d_embed", tpu_mtj_backend.params["d_model"]),
|
||||||
|
)
|
||||||
|
vars.sp = tpu_mtj_backend.shard_xmap(tensor)
|
||||||
|
soft_tokens = np.arange(
|
||||||
|
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"],
|
||||||
|
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"] + vars.sp_length,
|
||||||
|
dtype=np.uint32
|
||||||
|
)
|
||||||
|
return soft_tokens
|
||||||
|
|
||||||
def get_model_info(model, directory=""):
|
def get_model_info(model, directory=""):
|
||||||
# if the model is in the api list
|
# if the model is in the api list
|
||||||
key = False
|
key = False
|
||||||
@ -1816,28 +1840,6 @@ def load_model(use_gpu=True, gpu_layers=None, initial_load=False, online_model="
|
|||||||
return old_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs)
|
return old_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs)
|
||||||
modeling_utils.get_checkpoint_shard_files = new_get_checkpoint_shard_files
|
modeling_utils.get_checkpoint_shard_files = new_get_checkpoint_shard_files
|
||||||
|
|
||||||
def tpumtjgetsofttokens():
|
|
||||||
soft_tokens = None
|
|
||||||
if(vars.sp is None):
|
|
||||||
global np
|
|
||||||
if 'np' not in globals():
|
|
||||||
import numpy as np
|
|
||||||
tensor = np.zeros((1, tpu_mtj_backend.params.get("d_embed", tpu_mtj_backend.params["d_model"])), dtype=np.float32)
|
|
||||||
rows = tensor.shape[0]
|
|
||||||
padding_amount = tpu_mtj_backend.params["seq"] - (tpu_mtj_backend.params["seq"] % -tpu_mtj_backend.params["cores_per_replica"]) - rows
|
|
||||||
tensor = np.pad(tensor, ((0, padding_amount), (0, 0)))
|
|
||||||
tensor = tensor.reshape(
|
|
||||||
tpu_mtj_backend.params["cores_per_replica"],
|
|
||||||
-1,
|
|
||||||
tpu_mtj_backend.params.get("d_embed", tpu_mtj_backend.params["d_model"]),
|
|
||||||
)
|
|
||||||
vars.sp = tpu_mtj_backend.shard_xmap(tensor)
|
|
||||||
soft_tokens = np.arange(
|
|
||||||
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"],
|
|
||||||
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"] + vars.sp_length,
|
|
||||||
dtype=np.uint32
|
|
||||||
)
|
|
||||||
return soft_tokens
|
|
||||||
|
|
||||||
def tpumtjgenerate_warper_callback(scores) -> "np.array":
|
def tpumtjgenerate_warper_callback(scores) -> "np.array":
|
||||||
scores_shape = scores.shape
|
scores_shape = scores.shape
|
||||||
|
Reference in New Issue
Block a user