mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
OPT breakmodel
This commit is contained in:
49
aiserver.py
49
aiserver.py
@ -274,7 +274,7 @@ class vars:
|
||||
recentrngm = None # If a new random game was recently generated without Submitting after, this is the memory used (as a string), otherwise this is None
|
||||
useprompt = False # Whether to send the full prompt with every submit action
|
||||
breakmodel = False # For GPU users, whether to use both system RAM and VRAM to conserve VRAM while offering speedup compared to CPU-only
|
||||
bmsupported = False # Whether the breakmodel option is supported (GPT-Neo/GPT-J/XGLM only, currently)
|
||||
bmsupported = False # Whether the breakmodel option is supported (GPT-Neo/GPT-J/XGLM/OPT only, currently)
|
||||
nobreakmodel = False # Something specifically requested Breakmodel to be disabled (For example a models config)
|
||||
smandelete = False # Whether stories can be deleted from inside the browser
|
||||
smanrename = False # Whether stories can be renamed from inside the browser
|
||||
@ -391,7 +391,7 @@ def device_list(n_layers, primary=None, selected=None):
|
||||
def device_config(config):
|
||||
global breakmodel, generator
|
||||
import breakmodel
|
||||
n_layers = config.num_layers if hasattr(config, "num_layers") else config.n_layer
|
||||
n_layers = utils.num_layers(config)
|
||||
if(args.breakmodel_gpulayers is not None):
|
||||
try:
|
||||
breakmodel.gpu_blocks = list(map(int, args.breakmodel_gpulayers.split(',')))
|
||||
@ -464,7 +464,7 @@ def device_config(config):
|
||||
# If all layers are on the same device, use the old GPU generation mode
|
||||
while(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] == 0):
|
||||
breakmodel.gpu_blocks.pop()
|
||||
if(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] in (-1, config.num_layers if hasattr(config, "num_layers") else config.n_layer)):
|
||||
if(len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] in (-1, utils.num_layers(config))):
|
||||
vars.breakmodel = False
|
||||
vars.usegpu = True
|
||||
vars.gpu_device = len(breakmodel.gpu_blocks)-1
|
||||
@ -496,22 +496,33 @@ def move_model_to_devices(model):
|
||||
model.lm_head.to(breakmodel.primary_device)
|
||||
if(hasattr(model.transformer, 'wpe')):
|
||||
model.transformer.wpe.to(breakmodel.primary_device)
|
||||
else:
|
||||
elif(not hasattr(model.model, "decoder")):
|
||||
model.model.embed_tokens.to(breakmodel.primary_device)
|
||||
model.model.layer_norm.to(breakmodel.primary_device)
|
||||
model.lm_head.to(breakmodel.primary_device)
|
||||
model.model.embed_positions.to(breakmodel.primary_device)
|
||||
else:
|
||||
model.model.decoder.embed_tokens.to(breakmodel.primary_device)
|
||||
if(model.model.decoder.project_in is not None):
|
||||
model.model.decoder.project_in.to(breakmodel.primary_device)
|
||||
if(model.model.decoder.project_out is not None):
|
||||
model.model.decoder.project_out.to(breakmodel.primary_device)
|
||||
model.model.decoder.embed_positions.to(breakmodel.primary_device)
|
||||
gc.collect()
|
||||
GPTNeoModel.forward = breakmodel.new_forward_neo
|
||||
if("GPTJModel" in globals()):
|
||||
GPTJModel.forward = breakmodel.new_forward_neo # type: ignore
|
||||
if("XGLMModel" in globals()):
|
||||
XGLMModel.forward = breakmodel.new_forward_xglm # type: ignore
|
||||
if("OPTDecoder" in globals()):
|
||||
OPTDecoder.forward = breakmodel.new_forward_opt # type: ignore
|
||||
generator = model.generate
|
||||
if(hasattr(model, "transformer")):
|
||||
breakmodel.move_hidden_layers(model.transformer)
|
||||
else:
|
||||
elif(not hasattr(model.model, "decoder")):
|
||||
breakmodel.move_hidden_layers(model.model, model.model.layers)
|
||||
else:
|
||||
breakmodel.move_hidden_layers(model.model.decoder, model.model.decoder.layers)
|
||||
|
||||
#==================================================================#
|
||||
# Allow the models to override some settings
|
||||
@ -911,7 +922,7 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
||||
loadsettings()
|
||||
print("{0}Looking for GPU support...{1}".format(colors.PURPLE, colors.END), end="")
|
||||
vars.hascuda = torch.cuda.is_available()
|
||||
vars.bmsupported = vars.model_type in ("gpt_neo", "gptj", "xglm") and not vars.nobreakmodel
|
||||
vars.bmsupported = vars.model_type in ("gpt_neo", "gptj", "xglm", "opt") and not vars.nobreakmodel
|
||||
if(args.breakmodel is not None and args.breakmodel):
|
||||
print("WARNING: --breakmodel is no longer supported. Breakmodel mode is now automatically enabled when --breakmodel_gpulayers is used (see --help for details).", file=sys.stderr)
|
||||
if(args.breakmodel_layers is not None):
|
||||
@ -1123,6 +1134,10 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
||||
globals()[m] = getattr(__import__("transformers"), m)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
from transformers.models.opt.modeling_opt import OPTDecoder
|
||||
except:
|
||||
pass
|
||||
import transformers.generation_utils
|
||||
from transformers import __version__ as transformers_version
|
||||
|
||||
@ -1253,8 +1268,10 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
||||
input_ids.clamp_(max=self.config.vocab_size-1)
|
||||
if(hasattr(self, "transformer")):
|
||||
inputs_embeds = self.transformer.wte(input_ids)
|
||||
else:
|
||||
elif(not hasattr(model.model, "decoder")):
|
||||
inputs_embeds = self.model.embed_tokens(input_ids)
|
||||
else:
|
||||
inputs_embeds = self.model.decoder.embed_tokens(input_ids)
|
||||
if(vars.sp is not None):
|
||||
vars.sp = vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device)
|
||||
inputs_embeds = torch.where(
|
||||
@ -1262,14 +1279,14 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
||||
vars.sp[shifted_input_ids.clamp(min=0)],
|
||||
inputs_embeds,
|
||||
)
|
||||
if(not hasattr(self, "transformer")):
|
||||
if(hasattr(self.model, "embed_scale")):
|
||||
inputs_embeds *= self.model.embed_scale
|
||||
kwargs['inputs_embeds'] = inputs_embeds
|
||||
return old_forward(self, *args, **kwargs)
|
||||
cls.forward = new_causallm_forward
|
||||
for cls in (GPT2LMHeadModel, GPTNeoForCausalLM):
|
||||
patch_causallm(cls)
|
||||
for c in ("GPTJForCausalLM", "XGLMForCausalLM"):
|
||||
for c in ("GPTJForCausalLM", "XGLMForCausalLM", "OPTForCausalLM"):
|
||||
try:
|
||||
patch_causallm(getattr(__import__("transformers"), c))
|
||||
except:
|
||||
@ -1430,12 +1447,18 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
||||
|
||||
def get_hidden_size_from_model(model):
|
||||
try:
|
||||
return int(model.transformer.hidden_size)
|
||||
return int(model.model.decoder.project_in.in_features)
|
||||
except:
|
||||
try:
|
||||
return int(model.transformer.embed_dim)
|
||||
return int(model.model.decoder.embed_tokens.out_features)
|
||||
except:
|
||||
return int(model.lm_head.in_features)
|
||||
try:
|
||||
return int(model.transformer.hidden_size)
|
||||
except:
|
||||
try:
|
||||
return int(model.transformer.embed_dim)
|
||||
except:
|
||||
return int(model.lm_head.in_features)
|
||||
|
||||
def maybe_low_cpu_mem_usage() -> Dict[str, Any]:
|
||||
if(packaging.version.parse(transformers_version) < packaging.version.parse("4.11.0")):
|
||||
@ -1490,7 +1513,7 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
||||
import shutil
|
||||
shutil.move(vars.model.replace('/', '_'), "models/{}".format(vars.model.replace('/', '_')))
|
||||
print("\n", flush=True)
|
||||
with maybe_use_float16(), torch_lazy_loader.use_lazy_torch_load(enable=vars.lazy_load, callback=get_lazy_load_callback(model_config.num_layers if hasattr(model_config, "num_layers") else model_config.n_layer) if vars.lazy_load else None, dematerialized_modules=True):
|
||||
with maybe_use_float16(), torch_lazy_loader.use_lazy_torch_load(enable=vars.lazy_load, callback=get_lazy_load_callback(utils.num_layers(model_config)) if vars.lazy_load else None, dematerialized_modules=True):
|
||||
if(vars.lazy_load): # torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
|
||||
lowmem = {}
|
||||
if(os.path.isdir(vars.custmodpth)):
|
||||
|
Reference in New Issue
Block a user