mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
It just works.
This commit is contained in:
46
aiserver.py
46
aiserver.py
@@ -1142,9 +1142,9 @@ def move_model_to_devices(model):
|
|||||||
|
|
||||||
if(not utils.HAS_ACCELERATE and not koboldai_vars.breakmodel):
|
if(not utils.HAS_ACCELERATE and not koboldai_vars.breakmodel):
|
||||||
if(koboldai_vars.usegpu):
|
if(koboldai_vars.usegpu):
|
||||||
model = model.half().to(koboldai_vars.gpu_device)
|
model = model.to(koboldai_vars.gpu_device)
|
||||||
else:
|
else:
|
||||||
model = model.to('cpu').float()
|
model = model.to('cpu')
|
||||||
generator = model.generate
|
generator = model.generate
|
||||||
return
|
return
|
||||||
|
|
||||||
@@ -1172,7 +1172,6 @@ def move_model_to_devices(model):
|
|||||||
generator = model.generate
|
generator = model.generate
|
||||||
return
|
return
|
||||||
|
|
||||||
model.half()
|
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
if(hasattr(model, "transformer")):
|
if(hasattr(model, "transformer")):
|
||||||
@@ -2983,10 +2982,10 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
nbytes = size if dtype is torch.bool else size * ((torch.finfo if dtype.is_floating_point else torch.iinfo)(dtype).bits >> 3)
|
nbytes = size if dtype is torch.bool else size * ((torch.finfo if dtype.is_floating_point else torch.iinfo)(dtype).bits >> 3)
|
||||||
#print(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ", end="", flush=True)
|
#print(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ", end="", flush=True)
|
||||||
model_dict[key] = model_dict[key].materialize(f, map_location="cpu")
|
model_dict[key] = model_dict[key].materialize(f, map_location="cpu")
|
||||||
if model_dict[key].dtype is torch.float32:
|
# if model_dict[key].dtype is torch.float32:
|
||||||
koboldai_vars.fp32_model = True
|
# koboldai_vars.fp32_model = True
|
||||||
if convert_to_float16 and breakmodel.primary_device != "cpu" and koboldai_vars.hascuda and (koboldai_vars.breakmodel or koboldai_vars.usegpu) and model_dict[key].dtype is torch.float32:
|
# if convert_to_float16 and breakmodel.primary_device != "cpu" and koboldai_vars.hascuda and (koboldai_vars.breakmodel or koboldai_vars.usegpu) and model_dict[key].dtype is torch.float32:
|
||||||
model_dict[key] = model_dict[key].to(torch.float16)
|
# model_dict[key] = model_dict[key].to(torch.float16)
|
||||||
if breakmodel.primary_device == "cpu" or (not koboldai_vars.usegpu and not koboldai_vars.breakmodel and model_dict[key].dtype is torch.float16):
|
if breakmodel.primary_device == "cpu" or (not koboldai_vars.usegpu and not koboldai_vars.breakmodel and model_dict[key].dtype is torch.float16):
|
||||||
model_dict[key] = model_dict[key].to(torch.float32)
|
model_dict[key] = model_dict[key].to(torch.float32)
|
||||||
if device == "shared":
|
if device == "shared":
|
||||||
@@ -3010,16 +3009,16 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
if utils.offload_index:
|
if utils.offload_index:
|
||||||
for name, tensor in utils.named_buffers:
|
for name, tensor in utils.named_buffers:
|
||||||
dtype = tensor.dtype
|
dtype = tensor.dtype
|
||||||
if convert_to_float16 and breakmodel.primary_device != "cpu" and koboldai_vars.hascuda and (koboldai_vars.breakmodel or koboldai_vars.usegpu):
|
# if convert_to_float16 and breakmodel.primary_device != "cpu" and koboldai_vars.hascuda and (koboldai_vars.breakmodel or koboldai_vars.usegpu):
|
||||||
dtype = torch.float16
|
# dtype = torch.float16
|
||||||
if breakmodel.primary_device == "cpu" or (not koboldai_vars.usegpu and not koboldai_vars.breakmodel):
|
# if breakmodel.primary_device == "cpu" or (not koboldai_vars.usegpu and not koboldai_vars.breakmodel):
|
||||||
dtype = torch.float32
|
# dtype = torch.float32
|
||||||
if name in model_dict and model_dict[name].dtype is not dtype:
|
# if name in model_dict and model_dict[name].dtype is not dtype:
|
||||||
model_dict[name] = model_dict[name].to(dtype)
|
# model_dict[name] = model_dict[name].to(dtype)
|
||||||
if tensor.dtype is not dtype:
|
# if tensor.dtype is not dtype:
|
||||||
tensor = tensor.to(dtype)
|
# tensor = tensor.to(dtype)
|
||||||
if name not in utils.offload_index:
|
# if name not in utils.offload_index:
|
||||||
accelerate.utils.offload_weight(tensor, name, "accelerate-disk-cache", index=utils.offload_index)
|
# accelerate.utils.offload_weight(tensor, name, "accelerate-disk-cache", index=utils.offload_index)
|
||||||
accelerate.utils.save_offload_index(utils.offload_index, "accelerate-disk-cache")
|
accelerate.utils.save_offload_index(utils.offload_index, "accelerate-disk-cache")
|
||||||
utils.bar.close()
|
utils.bar.close()
|
||||||
utils.bar = None
|
utils.bar = None
|
||||||
@@ -3078,10 +3077,10 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||||
if(koboldai_vars.hascuda and koboldai_vars.usegpu):
|
if(koboldai_vars.hascuda and koboldai_vars.usegpu):
|
||||||
model = model.half().to(koboldai_vars.gpu_device)
|
model = model.to(koboldai_vars.gpu_device)
|
||||||
generator = model.generate
|
generator = model.generate
|
||||||
else:
|
else:
|
||||||
model = model.to('cpu').float()
|
model = model.to('cpu')
|
||||||
generator = model.generate
|
generator = model.generate
|
||||||
patch_causallm(model)
|
patch_causallm(model)
|
||||||
# Use the Generic implementation
|
# Use the Generic implementation
|
||||||
@@ -3131,7 +3130,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
# tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
# tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||||
try:
|
try:
|
||||||
# model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", **lowmem)
|
# model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", **lowmem)
|
||||||
model = load_quant(koboldai_vars.custmodpth, os.environ['LLAMA_30B_4BIT'], 4)
|
model = load_quant(koboldai_vars.custmodpth, os.environ['LLAMA_4BIT'], 4)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if("out of memory" in traceback.format_exc().lower()):
|
if("out of memory" in traceback.format_exc().lower()):
|
||||||
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
|
||||||
@@ -3190,7 +3189,6 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
import shutil
|
import shutil
|
||||||
tokenizer.save_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')))
|
tokenizer.save_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')))
|
||||||
if(koboldai_vars.fp32_model and ("breakmodel" not in globals() or not breakmodel.disk_blocks)): # Use save_pretrained to convert fp32 models to fp16, unless we are using disk cache because save_pretrained is not supported in that case
|
if(koboldai_vars.fp32_model and ("breakmodel" not in globals() or not breakmodel.disk_blocks)): # Use save_pretrained to convert fp32 models to fp16, unless we are using disk cache because save_pretrained is not supported in that case
|
||||||
model = model.half()
|
|
||||||
model.save_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), max_shard_size="500MiB")
|
model.save_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), max_shard_size="500MiB")
|
||||||
else: # For fp16 models, we can just copy the model files directly
|
else: # For fp16 models, we can just copy the model files directly
|
||||||
import transformers.configuration_utils
|
import transformers.configuration_utils
|
||||||
@@ -3224,7 +3222,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
if(koboldai_vars.hascuda):
|
if(koboldai_vars.hascuda):
|
||||||
if(koboldai_vars.usegpu):
|
if(koboldai_vars.usegpu):
|
||||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||||
model = model.half().to(koboldai_vars.gpu_device)
|
model = model.to(koboldai_vars.gpu_device)
|
||||||
generator = model.generate
|
generator = model.generate
|
||||||
elif(koboldai_vars.breakmodel): # Use both RAM and VRAM (breakmodel)
|
elif(koboldai_vars.breakmodel): # Use both RAM and VRAM (breakmodel)
|
||||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||||
@@ -3236,7 +3234,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||||
generator = model.generate
|
generator = model.generate
|
||||||
else:
|
else:
|
||||||
model = model.to('cpu').float()
|
model = model.to('cpu')
|
||||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||||
generator = model.generate
|
generator = model.generate
|
||||||
elif(utils.HAS_ACCELERATE and __import__("breakmodel").disk_blocks > 0):
|
elif(utils.HAS_ACCELERATE and __import__("breakmodel").disk_blocks > 0):
|
||||||
@@ -3244,7 +3242,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||||
generator = model.generate
|
generator = model.generate
|
||||||
else:
|
else:
|
||||||
model.to('cpu').float()
|
model.to('cpu')
|
||||||
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
koboldai_vars.modeldim = get_hidden_size_from_model(model)
|
||||||
generator = model.generate
|
generator = model.generate
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user