Merge pull request #35 from VE-FORBRYDERNE/sp

Softprompt support for the TPU backend
This commit is contained in:
henk717 2021-11-22 00:33:31 +01:00 committed by GitHub
commit d877190258
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 62 additions and 16 deletions

View File

@ -108,6 +108,7 @@ class vars:
loadselect = "" # Temporary storage for story filename to load
spselect = "" # Temporary storage for soft prompt filename to load
sp = None # Current soft prompt tensor (as a NumPy array)
sp_length = 0 # Length of current soft prompt in tokens, or 0 if not using a soft prompt
svowname = "" # Filename that was flagged for overwrite confirm
saveow = False # Whether or not overwrite confirm has been displayed
genseqs = [] # Temporary storage for generated sequences
@ -700,6 +701,8 @@ else:
assert vars.model == "TPUMeshTransformerGPTJ" and vars.custmodpth and os.path.isdir(vars.custmodpth)
import tpu_mtj_backend
tpu_mtj_backend.load_model(vars.custmodpth)
vars.allowsp = True
vars.modeldim = int(tpu_mtj_backend.params["d_model"])
tokenizer = tpu_mtj_backend.tokenizer
# Set up Flask routes
@ -1684,10 +1687,17 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
# Submit input text to generator
try:
if(vars.sp is not None):
raise ValueError("Softprompts are not supported by the TPU backend yet")
if(vars.dynamicscan):
raise ValueError("Dynamic world info scanning is not supported by the TPU backend yet")
soft_tokens = None
if(vars.sp is not None):
soft_tokens = np.arange(
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"],
tpu_mtj_backend.params["n_vocab"] + tpu_mtj_backend.params["n_vocab_padding"] + vars.sp_length,
dtype=np.uint32
)
genout = tpu_mtj_backend.infer(
txt,
gen_len = maximum-minimum+1,
@ -1697,6 +1707,8 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None):
tfs=vars.tfs,
numseqs=vars.numseqs,
repetition_penalty=vars.rep_pen,
soft_embeddings=vars.sp,
soft_tokens=soft_tokens,
)
except Exception as e:
@ -2525,6 +2537,7 @@ def loadRequest(loadpath, filename=None):
def spRequest(filename):
if(len(filename) == 0):
vars.sp = None
vars.sp_length = 0
return
global np
@ -2548,7 +2561,20 @@ def spRequest(filename):
tensor = np.float32(tensor)
assert not np.isinf(tensor).any() and not np.isnan(tensor).any()
vars.sp = torch.from_numpy(tensor)
vars.sp_length = tensor.shape[0]
if(vars.model in ("TPUMeshTransformerGPTJ",)):
rows = tensor.shape[0]
padding_amount = -(rows % -tpu_mtj_backend.params["cores_per_replica"])
tensor = np.pad(tensor, ((0, padding_amount), (0, 0)))
tensor = tensor.reshape(
tpu_mtj_backend.params["cores_per_replica"],
-1,
tpu_mtj_backend.params["d_model"],
)
vars.sp = np.float32(tensor)
else:
vars.sp = torch.from_numpy(tensor)
#==================================================================#
# Import an AIDungon game exported with Mimi's tool

View File

@ -1,5 +1,5 @@
import multiprocessing
from typing import Any, Dict, List
from typing import Any, Dict, List, Optional
import progressbar
import time
import os
@ -155,14 +155,14 @@ class PenalizingCausalTransformer(CausalTransformer):
def __init__(self, config):
# Initialize
super().__init__(config)
def generate(state, key, ctx, ctx_length, aux, sampler_options):
def generate(state, key, ctx, ctx_length, aux, sampler_options, soft_embeddings=None):
gen_length = self.gen_length
# These are the tokens that we don't want the AI to ever write
self.badwords = jnp.array([6880, 50256, 42496, 4613, 17414, 22039, 16410, 27, 29, 38430, 37922, 15913, 24618, 28725, 58, 47175, 36937, 26700, 12878, 16471, 37981, 5218, 29795, 13412, 45160, 3693, 49778, 4211, 20598, 36475, 33409, 44167, 32406, 29847, 29342, 42669, 685, 25787, 7359, 3784, 5320, 33994, 33490, 34516, 43734, 17635, 24293, 9959, 23785, 21737, 28401, 18161, 26358, 32509, 1279, 38155, 18189, 26894, 6927, 14610, 23834, 11037, 14631, 26933, 46904, 22330, 25915, 47934, 38214, 1875, 14692, 41832, 13163, 25970, 29565, 44926, 19841, 37250, 49029, 9609, 44438, 16791, 17816, 30109, 41888, 47527, 42924, 23984, 49074, 33717, 31161, 49082, 30138, 31175, 12240, 14804, 7131, 26076, 33250, 3556, 38381, 36338, 32756, 46581, 17912, 49146])
def generate_sample(context, ctx_length, aux):
# Give the initial context to the transformer
transformer = CausalTransformerShard(config)
_, initial_state = transformer.generate_initial(context, ctx_length)
_, initial_state = transformer.generate_initial(context, ctx_length, soft_embeddings=soft_embeddings)
# The "generated" array will contain the tokens from the
# context as well as the tokens picked by the sampler at
# each stage, padded with a bunch of 50256s, so we know
@ -185,7 +185,7 @@ class PenalizingCausalTransformer(CausalTransformer):
# how strongly it thinks each of the 50257 tokens in its
# vocabulary should be appended to the context, followed
# by 143 apparently useless columns ???)
logits, new_state = transformer.generate_once(next_token, decode_state)
logits, new_state = transformer.generate_once(next_token, decode_state, soft_embeddings=soft_embeddings)
# Verify that logits does indeed have that many rows and
# columns (if you get an error here, pray for mercy)
assert logits.shape == (1, config["n_vocab"])
@ -243,8 +243,8 @@ class PenalizingCausalTransformer(CausalTransformer):
return final_state, outputs
generate_fn = hk.transform(generate_sample).apply
return generate_fn(state["params"], key, ctx, ctx_length, aux)
self.generate_xmap = jax.experimental.maps.xmap(fun=generate, in_axes=(["shard", ...], ["batch", ...], ["batch", ...], ["batch", ...], ["batch", ...], ["batch", ...]), out_axes=["batch", ...], axis_resources={'shard': 'mp', 'batch': 'dp'})
def generate(self, ctx, ctx_length, gen_length, sampler_options, return_logits=False):
self.generate_xmap = jax.experimental.maps.xmap(fun=generate, in_axes=(["shard", ...], ["batch", ...], ["batch", ...], ["batch", ...], ["batch", ...], ["batch", ...], ["shard", ...]), out_axes=["batch", ...], axis_resources={'shard': 'mp', 'batch': 'dp'})
def generate(self, ctx, ctx_length, gen_length, sampler_options, return_logits=False, soft_embeddings=None):
key = hk.PRNGSequence(random.randint(0, 2 ** 60))
batch_size = ctx.shape[0]
aux = jnp.zeros((batch_size, gen_length), dtype=jnp.uint32)
@ -257,19 +257,33 @@ class PenalizingCausalTransformer(CausalTransformer):
ctx,
np.array(ctx_length, dtype=np.uint32),
aux,
sampler_options
sampler_options,
soft_embeddings,
)
def infer(context, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, repetition_penalty=1.0, numseqs=1, gen_len=80) -> List[str]:
def infer(
context: str,
top_p=0.9,
temp=0.5,
top_k=0,
tfs=1.0,
repetition_penalty=1.0,
numseqs=1,
gen_len=80,
soft_embeddings: Optional[np.array] = None,
soft_tokens: Optional[np.array] = None,
) -> List[str]:
maps.thread_resources.env = thread_resources_env
total_batch = numseqs
tokens = tokenizer.encode(context, max_length=params["seq"], truncation=True)
provided_ctx = len(tokens)
tokens = np.uint32(tokenizer.encode(context, max_length=params["seq"] - soft_tokens.shape[0] if soft_tokens is not None else 0, truncation=True))
if(soft_tokens is not None):
tokens = np.uint32(np.concatenate((soft_tokens, tokens)))
provided_ctx = tokens.shape[0]
pad_amount = seq - provided_ctx
padded_tokens = np.pad(np.asarray(tokens, dtype=np.uint32), ((pad_amount, 0),), constant_values=pad_token_id)
padded_tokens = np.pad(tokens, ((pad_amount, 0),), constant_values=pad_token_id)
batched_tokens = np.array([padded_tokens] * total_batch)
length = np.ones(total_batch, dtype=np.uint32) * len(tokens)
length = np.ones(total_batch, dtype=np.uint32) * provided_ctx
samples = []
batched_generator_params = {
"temp": temp * np.ones(total_batch),
@ -278,7 +292,13 @@ def infer(context, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, repetition_penalty=1.0
"repetition_penalty": repetition_penalty * np.ones(total_batch),
"top_k": np.full(total_batch, top_k, dtype=np.uint32)
}
output = network.generate(batched_tokens, length, gen_len, batched_generator_params)
output = network.generate(
batched_tokens,
length,
gen_len,
batched_generator_params,
soft_embeddings=soft_embeddings,
)
decoded_tokens = output[1][0]
for o in decoded_tokens[:, :, 0]:
samples.append(tokenizer.decode(o))