Merge ebolam's model-plugins branch

This commit is contained in:
0cc4m
2023-05-28 09:26:13 +02:00
33 changed files with 3503 additions and 1631 deletions

View File

@@ -6,6 +6,7 @@ import torch
import requests
import numpy as np
from typing import List, Optional, Union
import os
import utils
from logger import logger
@@ -17,15 +18,42 @@ from modeling.inference_model import (
ModelCapabilities,
)
model_backend_name = "KoboldAI API"
class APIException(Exception):
"""To be used for errors when using the Kobold API as an interface."""
class APIInferenceModel(InferenceModel):
def __init__(self, base_url: str) -> None:
class model_backend(InferenceModel):
def __init__(self) -> None:
super().__init__()
self.base_url = base_url.rstrip("/")
self.base_url = ""
self.model_name = "KoboldAI API"
def is_valid(self, model_name, model_path, menu_path):
return model_name == "API"
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
if os.path.exists("settings/api.model_backend.settings") and 'base_url' not in vars(self):
with open("settings/api.model_backend.settings", "r") as f:
self.base_url = json.load(f)['base_url']
requested_parameters = []
requested_parameters.append({
"uitype": "text",
"unit": "text",
"label": "URL",
"id": "base_url",
"default": self.base_url,
"check": {"value": "", 'check': "!="},
"tooltip": "The URL of the KoboldAI API to connect to.",
"menu_path": "",
"extra_classes": "",
"refresh_model_inputs": False
})
return requested_parameters
def set_input_parameters(self, parameters):
self.base_url = parameters['base_url'].rstrip("/")
def _load(self, save_model: bool, initial_load: bool) -> None:
tokenizer_id = requests.get(f"{self.base_url}/api/v1/model").json()["result"]
@@ -35,6 +63,10 @@ class APIInferenceModel(InferenceModel):
# Do not allow API to be served over the API
self.capabilties = ModelCapabilities(api_host=False)
def _save_settings(self):
with open("settings/api.model_backend.settings", "w") as f:
json.dump({"base_url": self.base_url}, f, indent="")
def _raw_generate(
self,
prompt_tokens: Union[List[int], torch.Tensor],

View File

@@ -4,6 +4,7 @@ import torch
import requests
import numpy as np
from typing import List, Optional, Union
import os
import utils
from logger import logger
@@ -15,19 +16,54 @@ from modeling.inference_model import (
)
model_backend_name = "KoboldAI Old Colab Method"
class BasicAPIException(Exception):
"""To be used for errors when using the Basic API as an interface."""
class BasicAPIInferenceModel(InferenceModel):
class model_backend(InferenceModel):
def __init__(self) -> None:
super().__init__()
self.colaburl = ""
# Do not allow API to be served over the API
self.capabilties = ModelCapabilities(api_host=False)
def is_valid(self, model_name, model_path, menu_path):
return model_name == "Colab"
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
if os.path.exists("settings/api.model_backend.settings") and 'colaburl' not in vars(self):
with open("settings/api.model_backend.settings", "r") as f:
self.colaburl = json.load(f)['base_url']
requested_parameters = []
requested_parameters.append({
"uitype": "text",
"unit": "text",
"label": "URL",
"id": "colaburl",
"default": self.colaburl,
"check": {"value": "", 'check': "!="},
"tooltip": "The URL of the Colab KoboldAI API to connect to.",
"menu_path": "",
"extra_classes": "",
"refresh_model_inputs": False
})
return requested_parameters
def set_input_parameters(self, parameters):
self.colaburl = parameters['colaburl']
def _initialize_model(self):
return
def _load(self, save_model: bool, initial_load: bool) -> None:
self.tokenizer = self._get_tokenizer("EleutherAI/gpt-neo-2.7B")
def _save_settings(self):
with open("settings/basic_api.model_backend.settings", "w") as f:
json.dump({"colaburl": self.colaburl}, f, indent="")
def _raw_generate(
self,
@@ -68,7 +104,7 @@ class BasicAPIInferenceModel(InferenceModel):
}
# Create request
req = requests.post(utils.koboldai_vars.colaburl, json=reqdata)
req = requests.post(self.colaburl, json=reqdata)
if req.status_code != 200:
raise BasicAPIException(f"Bad status code {req.status_code}")

View File

@@ -23,6 +23,7 @@ except ModuleNotFoundError as e:
from modeling.inference_models.hf_torch import HFTorchInferenceModel
model_backend_name = "Huggingface"
class GenericHFTorchInferenceModel(HFTorchInferenceModel):
def load_config(self) -> None:
@@ -37,9 +38,9 @@ class GenericHFTorchInferenceModel(HFTorchInferenceModel):
if self.model_name == "NeoCustom":
self.model_name = os.path.basename(
os.path.normpath(utils.koboldai_vars.custmodpth)
os.path.normpath(self.path)
)
utils.koboldai_vars.model = self.model_name
utils.koboldai_vars.model = self.model_name
# If we specify a model and it's in the root directory, we need to move
# it to the models directory (legacy folder structure to new)
@@ -51,14 +52,11 @@ class GenericHFTorchInferenceModel(HFTorchInferenceModel):
self.init_model_config()
def _load(self, save_model: bool, initial_load: bool) -> None:
self.load_config()
tf_kwargs = {
"low_cpu_mem_usage": True,
}
if utils.koboldai_vars.model_type == "gpt2":
if self.model_type == "gpt2":
# We must disable low_cpu_mem_usage and if using a GPT-2 model
# because GPT-2 is not compatible with this feature yet.
tf_kwargs.pop("low_cpu_mem_usage", None)
@@ -68,12 +66,14 @@ class GenericHFTorchInferenceModel(HFTorchInferenceModel):
# If we're using torch_lazy_loader, we need to get breakmodel config
# early so that it knows where to load the individual model tensors
logger.debug("lazy_load: {} hascuda: {} breakmodel: {} nobreakmode: {}".format(self.lazy_load, utils.koboldai_vars.hascuda, self.breakmodel, self.nobreakmodel))
if (
self.lazy_load
and utils.koboldai_vars.hascuda
and utils.koboldai_vars.breakmodel
and not utils.koboldai_vars.nobreakmodel
and self.breakmodel
and not self.nobreakmodel
):
logger.debug("loading breakmodel")
self.breakmodel_device_config(self.model_config)
if self.lazy_load:
@@ -250,11 +250,12 @@ class GenericHFTorchInferenceModel(HFTorchInferenceModel):
self.patch_embedding()
if utils.koboldai_vars.hascuda:
if utils.koboldai_vars.usegpu:
if self.usegpu:
# Use just VRAM
self.model = self.model.half().to(utils.koboldai_vars.gpu_device)
elif utils.koboldai_vars.breakmodel:
elif self.breakmodel:
# Use both RAM and VRAM (breakmodel)
if not self.lazy_load:
self.breakmodel_device_config(self.model.config)
@@ -269,6 +270,11 @@ class GenericHFTorchInferenceModel(HFTorchInferenceModel):
self._move_to_devices()
else:
self.model = self.model.to("cpu").float()
self.model.kai_model = self
utils.koboldai_vars.modeldim = self.get_hidden_size()
def _save_settings(self):
with open("settings/{}.generic_hf_torch.model_backend.settings".format(self.model_name.replace("/", "_")), "w") as f:
json.dump({"layers": self.layers if 'layers' in vars(self) else [], "disk_layers": self.disk_layers if 'disk_layers' in vars(self) else 0}, f, indent="")

View File

@@ -0,0 +1,33 @@
import torch
import requests
import numpy as np
from typing import List, Optional, Union
import os
import utils
from logger import logger
from modeling.inference_model import (
GenerationResult,
GenerationSettings,
InferenceModel,
)
from modeling.inference_models.openai_gooseai import model_backend as openai_gooseai_model_backend
model_backend_name = "GooseAI"
class OpenAIAPIError(Exception):
def __init__(self, error_type: str, error_message) -> None:
super().__init__(f"{error_type}: {error_message}")
class model_backend(openai_gooseai_model_backend):
"""InferenceModel for interfacing with OpenAI's generation API."""
def __init__(self):
super().__init__()
self.url = "https://api.goose.ai/v1/engines"
self.source = "GooseAI"
def is_valid(self, model_name, model_path, menu_path):
return model_name == "GooseAI"

View File

@@ -1,25 +1,230 @@
import os
import os, sys
from typing import Optional
<<<<<<< HEAD
from hf_bleeding_edge import AutoConfig
=======
from transformers import AutoConfig
import warnings
>>>>>>> ebolam/Model_Plugins
import utils
import json
import koboldai_settings
from logger import logger
from modeling.inference_model import InferenceModel
import torch
import gc
class HFInferenceModel(InferenceModel):
def __init__(self, model_name: str) -> None:
def __init__(self) -> None:
super().__init__()
self.model_config = None
self.model_name = model_name
#self.model_name = model_name
self.model = None
self.tokenizer = None
self.badwordsids = koboldai_settings.badwordsids_default
self.usegpu = False
def is_valid(self, model_name, model_path, menu_path):
try:
if model_path is not None and os.path.exists(model_path):
self.model_config = AutoConfig.from_pretrained(model_path)
elif(os.path.exists("models/{}".format(model_name.replace('/', '_')))):
self.model_config = AutoConfig.from_pretrained("models/{}".format(model_name.replace('/', '_')), revision=utils.koboldai_vars.revision, cache_dir="cache")
else:
self.model_config = AutoConfig.from_pretrained(model_name, revision=utils.koboldai_vars.revision, cache_dir="cache")
return True
except:
return False
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
requested_parameters = []
if not self.hf_torch:
return []
if model_name == 'customhuggingface':
requested_parameters.append({
"uitype": "text",
"unit": "text",
"label": "Huggingface Model Name",
"id": "custom_model_name",
"default": parameters["custom_model_name"] if "custom_model_name" in parameters and parameters["custom_model_name"] != "" else "",
"check": {"value": "", 'check': "!="},
"tooltip": "Model name from https://huggingface.co/",
"menu_path": "",
"refresh_model_inputs": True,
"extra_classes": ""
})
if model_name != 'customhuggingface' or "custom_model_name" in parameters:
model_name = parameters["custom_model_name"] if "custom_model_name" in parameters and parameters["custom_model_name"] != "" else model_name
if model_path is not None and os.path.exists(model_path):
self.model_config = AutoConfig.from_pretrained(model_path)
elif(os.path.exists("models/{}".format(model_name.replace('/', '_')))):
self.model_config = AutoConfig.from_pretrained("models/{}".format(model_name.replace('/', '_')), revision=utils.koboldai_vars.revision, cache_dir="cache")
else:
self.model_config = AutoConfig.from_pretrained(model_name, revision=utils.koboldai_vars.revision, cache_dir="cache")
layer_count = self.model_config["n_layer"] if isinstance(self.model_config, dict) else self.model_config.num_layers if hasattr(self.model_config, "num_layers") else self.model_config.n_layer if hasattr(self.model_config, "n_layer") else self.model_config.num_hidden_layers if hasattr(self.model_config, 'num_hidden_layers') else None
layer_count = None if hasattr(self, "get_model_type") and self.get_model_type() == "gpt2" else layer_count #Skip layers if we're a GPT2 model as it doesn't support breakmodel
if layer_count is not None and layer_count >= 0 and not self.nobreakmodel:
if os.path.exists("settings/{}.generic_hf_torch.model_backend.settings".format(model_name.replace("/", "_"))) and 'base_url' not in vars(self):
with open("settings/{}.generic_hf_torch.model_backend.settings".format(model_name.replace("/", "_")), "r") as f:
temp = json.load(f)
break_values = temp['layers'] if 'layers' in temp else [layer_count]
disk_blocks = temp['disk_layers'] if 'disk_layers' in temp else 0
else:
break_values = [layer_count]
disk_blocks = 0
break_values = [int(x) for x in break_values if x != '' and x is not None]
gpu_count = torch.cuda.device_count()
break_values += [0] * (gpu_count - len(break_values))
if disk_blocks is not None:
break_values += [int(disk_blocks)]
requested_parameters.append({
"uitype": "Valid Display",
"unit": "text",
"label": "Current Allocated Layers: %1/{}".format(layer_count), #%1 will be the validation value
"id": "valid_layers",
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
for i in range(gpu_count):
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "{} Layers".format(torch.cuda.get_device_name(i)),
"id": "{}_Layers".format(i),
"min": 0,
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
"default": break_values[i],
"tooltip": "The number of layers to put on {}.".format(torch.cuda.get_device_name(i)),
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "CPU Layers",
"id": "CPU_Layers",
"min": 0,
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
"default": layer_count - sum(break_values),
"tooltip": "The number of layers to put on the CPU. This will use your system RAM. It will also do inference partially on CPU. Use if you must.",
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
if disk_blocks is not None:
requested_parameters.append({
"uitype": "slider",
"unit": "int",
"label": "Disk Layers",
"id": "Disk_Layers",
"min": 0,
"max": layer_count,
"step": 1,
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)]+['CPU_Layers']+(['Disk_Layers'] if disk_blocks is not None else []), "value": layer_count, 'check': "="},
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
"default": disk_blocks,
"tooltip": "The number of layers to put on the disk. This will use your hard drive. The is VERY slow in comparison to GPU or CPU. Use as a last resort.",
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
else:
requested_parameters.append({
"uitype": "toggle",
"unit": "bool",
"label": "Use GPU",
"id": "use_gpu",
"default": True,
"tooltip": "Whether or not to use the GPU",
"menu_path": "Layers",
"extra_classes": "",
"refresh_model_inputs": False
})
return requested_parameters
def set_input_parameters(self, parameters):
if self.hf_torch and hasattr(self, "get_model_type") and self.get_model_type() != "gpt2":
import breakmodel
layer_count = self.model_config["n_layer"] if isinstance(self.model_config, dict) else self.model_config.num_layers if hasattr(self.model_config, "num_layers") else self.model_config.n_layer if hasattr(self.model_config, "n_layer") else self.model_config.num_hidden_layers if hasattr(self.model_config, 'num_hidden_layers') else None
if layer_count is not None and layer_count >= 0 and not self.nobreakmodel:
gpu_count = torch.cuda.device_count()
layers = []
for i in range(gpu_count):
if isinstance(parameters["{}_Layers".format(i)], str) and parameters["{}_Layers".format(i)].isnumeric():
layers.append(int(parameters["{}_Layers".format(i)]))
elif isinstance(parameters["{}_Layers".format(i)], str):
layers.append(None)
else:
layers.append(parameters["{}_Layers".format(i)])
self.cpu_layers = int(parameters['CPU_Layers']) if 'CPU_Layers' in parameters else None
if isinstance(self.cpu_layers, str):
self.cpu_layers = int(self.cpu_layers) if self.cpu_layers.isnumeric() else 0
self.layers = layers
self.disk_layers = parameters['Disk_Layers'] if 'Disk_Layers' in parameters else 0
if isinstance(self.disk_layers, str):
self.disk_layers = int(self.disk_layers) if self.disk_layers.isnumeric() else 0
breakmodel.gpu_blocks = layers
breakmodel.disk_blocks = self.disk_layers
self.usegpu = self.cpu_layers == 0 and breakmodel.disk_blocks == 0 and sum(self.layers)-self.layers[0] == 0
self.model_type = self.get_model_type()
self.breakmodel = ((self.model_type != 'gpt2') or self.model_type in ("gpt_neo", "gptj", "xglm", "opt")) and not self.nobreakmodel
self.lazy_load = True
logger.debug("Model type: {}".format(self.model_type))
else:
logger.debug("Disabling breakmodel and lazyload")
self.usegpu = parameters['use_gpu'] if 'use_gpu' in parameters else None
self.breakmodel = False
self.lazy_load = False
logger.info(parameters)
self.model_name = parameters['custom_model_name'] if 'custom_model_name' in parameters else parameters['id']
self.path = parameters['path'] if 'path' in parameters else None
def unload(self):
if hasattr(self, 'model'):
self.model = None
if hasattr(self, 'tokenizer'):
self.tokenizer = None
if hasattr(self, 'model_config'):
self.model_config = None
with torch.no_grad():
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="torch.distributed.reduce_op is deprecated")
for tensor in gc.get_objects():
try:
if torch.is_tensor(tensor):
tensor.set_(torch.tensor((), device=tensor.device, dtype=tensor.dtype))
except:
pass
gc.collect()
try:
with torch.no_grad():
torch.cuda.empty_cache()
except:
pass
def _post_load(self) -> None:
self.badwordsids = koboldai_settings.badwordsids_default
self.model_type = str(self.model_config.model_type)
# These are model specific tokenizer overrides if a model has bad defaults
if utils.koboldai_vars.model_type == "llama":
if self.model_type == "llama":
# Note: self.tokenizer is a GenericTokenizer, and self.tokenizer.tokenizer is the actual LlamaTokenizer
self.tokenizer.add_bos_token = False
@@ -59,7 +264,7 @@ class HFInferenceModel(InferenceModel):
token_ids = [first]
elif len(token_ids) > 0:
first = int(token_ids[0])
elif token_ids:
elif token_ids is not None and len(token_ids) > 0:
first = token_ids[0]
result = original_decode(self, token_ids, *args, **kwargs)
if first is not None and first in has_prefix_space:
@@ -103,32 +308,32 @@ class HFInferenceModel(InferenceModel):
return result
object.__setattr__(self.tokenizer, '__call__', call_wrapper.__get__(self.tokenizer))
elif utils.koboldai_vars.model_type == "opt":
elif self.model_type == "opt":
self.tokenizer._koboldai_header = self.tokenizer.encode("")
self.tokenizer.add_bos_token = False
self.tokenizer.add_prefix_space = False
# Change newline behavior to match model quirks
if utils.koboldai_vars.model_type == "xglm":
if self.model_type == "xglm":
# Default to </s> newline mode if using XGLM
utils.koboldai_vars.newlinemode = "s"
elif utils.koboldai_vars.model_type in ["opt", "bloom"]:
elif self.model_type in ["opt", "bloom"]:
# Handle </s> but don't convert newlines if using Fairseq models that have newlines trained in them
utils.koboldai_vars.newlinemode = "ns"
# Clean up tokens that cause issues
if (
utils.koboldai_vars.badwordsids == koboldai_settings.badwordsids_default
and utils.koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")
self.badwordsids == koboldai_settings.badwordsids_default
and self.model_type not in ("gpt2", "gpt_neo", "gptj")
):
utils.koboldai_vars.badwordsids = [
self.badwordsids = [
[v]
for k, v in self.tokenizer.get_vocab().items()
if any(c in str(k) for c in "[]")
]
if utils.koboldai_vars.newlinemode == "n":
utils.koboldai_vars.badwordsids.append([self.tokenizer.eos_token_id])
self.badwordsids.append([self.tokenizer.eos_token_id])
return super()._post_load()
@@ -139,9 +344,12 @@ class HFInferenceModel(InferenceModel):
Returns a string of the model's path locally, or None if it is not downloaded.
If ignore_existance is true, it will always return a path.
"""
if self.path is not None:
if os.path.exists(self.path):
return self.path
if self.model_name in ["NeoCustom", "GPT2Custom", "TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX"]:
model_path = utils.koboldai_vars.custmodpth
model_path = self.path
assert model_path
# Path can be absolute or relative to models directory
@@ -158,7 +366,7 @@ class HFInferenceModel(InferenceModel):
return model_path
basename = utils.koboldai_vars.model.replace("/", "_")
basename = self.model_name.replace("/", "_")
if legacy:
ret = basename
else:
@@ -176,24 +384,25 @@ class HFInferenceModel(InferenceModel):
revision=utils.koboldai_vars.revision,
cache_dir="cache",
)
utils.koboldai_vars.model_type = self.model_config.model_type
self.model_type = self.model_config.model_type
if "gptq_bits" in dir(self.model_config):
utils.koboldai_vars.gptq_model = True
utils.koboldai_vars.gptq_bits = self.model_config.gptq_bits
utils.koboldai_vars.gptq_groupsize = self.model_config.gptq_groupsize if getattr(self.model_config, "gptq_groupsize", False) else -1
utils.koboldai_vars.gptq_version = self.model_config.gptq_version if getattr(self.model_config, "gptq_version", False) else 1
utils.koboldai_vars.gptq_file = None
self.gptq_model = True
self.gptq_bits = self.model_config.gptq_bits
self.gptq_groupsize = self.model_config.gptq_groupsize if getattr(self.model_config, "gptq_groupsize", False) else -1
self.gptq_version = self.model_config.gptq_version if getattr(self.model_config, "gptq_version", False) else 1
self.gptq_file = None
else:
utils.koboldai_vars.gptq_model = False
self.gptq_model = False
except ValueError:
utils.koboldai_vars.model_type = {
self.model_type = {
"NeoCustom": "gpt_neo",
"GPT2Custom": "gpt2",
}.get(utils.koboldai_vars.model)
}.get(self.model)
if not utils.koboldai_vars.model_type:
if not self.model_type:
logger.warning(
"No model type detected, assuming Neo (If this is a GPT2 model use the other menu option or --model GPT2Custom)"
)
utils.koboldai_vars.model_type = "gpt_neo"
self.model_type = "gpt_neo"

View File

@@ -17,19 +17,18 @@ from modeling.inference_model import (
ModelCapabilities,
)
from modeling.inference_models.hf import HFInferenceModel
from modeling.tokenizer import GenericTokenizer
# This file shouldn't be imported unless using the TPU
assert utils.koboldai_vars.use_colab_tpu
import tpu_mtj_backend
model_backend_name = "Huggingface MTJ"
class HFMTJInferenceModel(HFInferenceModel):
class model_backend(HFInferenceModel):
def __init__(
self,
model_name: str,
#model_name: str,
) -> None:
super().__init__(model_name)
super().__init__()
self.hf_torch = False
self.model_config = None
self.capabilties = ModelCapabilities(
embedding_manipulation=False,
@@ -38,8 +37,13 @@ class HFMTJInferenceModel(HFInferenceModel):
post_token_probs=False,
uses_tpu=True,
)
def is_valid(self, model_name, model_path, menu_path):
# This file shouldn't be imported unless using the TPU
return utils.koboldai_vars.use_colab_tpu and super().is_valid(model_name, model_path, menu_path)
def setup_mtj(self) -> None:
import tpu_mtj_backend
def mtj_warper_callback(scores) -> "np.array":
scores_shape = scores.shape
scores_list = scores.tolist()
@@ -146,7 +150,7 @@ class HFMTJInferenceModel(HFInferenceModel):
tpu_mtj_backend.socketio = utils.socketio
if utils.koboldai_vars.model == "TPUMeshTransformerGPTNeoX":
if self.model_name == "TPUMeshTransformerGPTNeoX":
utils.koboldai_vars.badwordsids = utils.koboldai_vars.badwordsids_neox
print(
@@ -154,7 +158,7 @@ class HFMTJInferenceModel(HFInferenceModel):
Colors.PURPLE, Colors.END
)
)
if utils.koboldai_vars.model in (
if self.model_name in (
"TPUMeshTransformerGPTJ",
"TPUMeshTransformerGPTNeoX",
) and (
@@ -164,7 +168,7 @@ class HFMTJInferenceModel(HFInferenceModel):
raise FileNotFoundError(
f"The specified model path {repr(utils.koboldai_vars.custmodpth)} is not the path to a valid folder"
)
if utils.koboldai_vars.model == "TPUMeshTransformerGPTNeoX":
if self.model_name == "TPUMeshTransformerGPTNeoX":
tpu_mtj_backend.pad_token_id = 2
tpu_mtj_backend.koboldai_vars = utils.koboldai_vars
@@ -175,13 +179,15 @@ class HFMTJInferenceModel(HFInferenceModel):
tpu_mtj_backend.settings_callback = mtj_settings_callback
def _load(self, save_model: bool, initial_load: bool) -> None:
import tpu_mtj_backend
self.setup_mtj()
self.init_model_config()
utils.koboldai_vars.allowsp = True
logger.info(self.model_name)
tpu_mtj_backend.load_model(
utils.koboldai_vars.model,
hf_checkpoint=utils.koboldai_vars.model
self.model_name,
hf_checkpoint=self.model_name
not in ("TPUMeshTransformerGPTJ", "TPUMeshTransformerGPTNeoX")
and utils.koboldai_vars.use_colab_tpu,
socketio_queue=koboldai_settings.queue,
@@ -193,12 +199,11 @@ class HFMTJInferenceModel(HFInferenceModel):
utils.koboldai_vars.modeldim = int(
tpu_mtj_backend.params.get("d_embed", tpu_mtj_backend.params["d_model"])
)
self.tokenizer = tpu_mtj_backend.tokenizer
self.tokenizer = GenericTokenizer(tpu_mtj_backend.tokenizer)
if (
utils.koboldai_vars.badwordsids is koboldai_settings.badwordsids_default
and utils.koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")
and self.model_type not in ("gpt2", "gpt_neo", "gptj")
):
utils.koboldai_vars.badwordsids = [
[v]
@@ -207,6 +212,7 @@ class HFMTJInferenceModel(HFInferenceModel):
]
def get_soft_tokens(self) -> np.array:
import tpu_mtj_backend
soft_tokens = None
if utils.koboldai_vars.sp is None:
@@ -258,6 +264,7 @@ class HFMTJInferenceModel(HFInferenceModel):
seed: Optional[int] = None,
**kwargs,
) -> GenerationResult:
import tpu_mtj_backend
warpers.update_settings()
soft_tokens = self.get_soft_tokens()

View File

@@ -53,15 +53,12 @@ LOG_SAMPLER_NO_EFFECT = False
class HFTorchInferenceModel(HFInferenceModel):
def __init__(
self,
model_name: str,
lazy_load: bool,
low_mem: bool,
) -> None:
super().__init__(model_name)
self.lazy_load = lazy_load
self.low_mem = low_mem
def __init__(self) -> None:
super().__init__()
self.hf_torch = True
self.lazy_load = True
self.low_mem = False
self.nobreakmodel = False
self.post_token_hooks = [
PostTokenHooks.stream_tokens,
@@ -128,7 +125,19 @@ class HFTorchInferenceModel(HFInferenceModel):
else:
return "Unknown"
def get_auxilary_device(self):
"""Get device auxilary tensors like inputs should be stored on."""
# NOTE: TPU isn't a torch device, so TPU stuff gets sent to CPU.
if utils.koboldai_vars.hascuda and self.usegpu:
return utils.koboldai_vars.gpu_device
elif utils.koboldai_vars.hascuda and self.breakmodel:
import breakmodel
return breakmodel.primary_device
return "cpu"
def _post_load(m_self) -> None:
if not utils.koboldai_vars.model_type:
utils.koboldai_vars.model_type = m_self.get_model_type()
@@ -228,7 +237,7 @@ class HFTorchInferenceModel(HFInferenceModel):
else:
gen_in = prompt_tokens
device = utils.get_auxilary_device()
device = self.get_auxilary_device()
gen_in = gen_in.to(device)
additional_bad_words_ids = [self.tokenizer.encode("\n")] if single_line else []
@@ -245,7 +254,7 @@ class HFTorchInferenceModel(HFInferenceModel):
len(prompt_tokens) + max_new, utils.koboldai_vars.max_length
),
repetition_penalty=1.0,
bad_words_ids=utils.koboldai_vars.badwordsids
bad_words_ids=self.badwordsids
+ additional_bad_words_ids,
use_cache=True,
num_return_sequences=batch_count,
@@ -291,11 +300,14 @@ class HFTorchInferenceModel(HFInferenceModel):
logger.error("Invalid load key! Aborting.")
raise
logger.warning(f"Fell back to GPT2LMHeadModel due to {traceback.format_exc()}")
logger.warning(f"Fell back to GPT2LMHeadModel due to {e}")
logger.debug(traceback.format_exc())
try:
return GPT2LMHeadModel.from_pretrained(location, **tf_kwargs)
except Exception as e:
logger.warning(f"Fell back to GPTNeoForCausalLM due to {e}")
logger.debug(traceback.format_exc())
return GPTNeoForCausalLM.from_pretrained(location, **tf_kwargs)
def get_hidden_size(self) -> int:
@@ -401,8 +413,6 @@ class HFTorchInferenceModel(HFInferenceModel):
if not self.lazy_load:
return
if utils.args.breakmodel_disklayers is not None:
breakmodel.disk_blocks = utils.args.breakmodel_disklayers
disk_blocks = breakmodel.disk_blocks
gpu_blocks = breakmodel.gpu_blocks
@@ -422,31 +432,37 @@ class HFTorchInferenceModel(HFInferenceModel):
device_map: Dict[str, Union[str, int]] = {}
@functools.lru_cache(maxsize=None)
def get_original_key(key):
def get_original_key(key) -> Optional[str]:
try:
return max(
(
original_key
for original_key in utils.module_names
if original_key.endswith(key)
),
key=len,
)
key_candidates = [
original_key
for original_key in utils.module_names
if original_key.endswith(key)
]
except ValueError:
return key
if not key_candidates:
logger.debug(f"!!! No key candidates for {key}")
return None
return max(key_candidates, key=len)
for key, value in model_dict.items():
original_key = get_original_key(key)
if not original_key:
continue
if isinstance(value, lazy_loader.LazyTensor) and not any(
original_key.startswith(n) for n in utils.layers_module_names
):
device_map[key] = (
utils.koboldai_vars.gpu_device
if utils.koboldai_vars.hascuda and utils.koboldai_vars.usegpu
if utils.koboldai_vars.hascuda and self.usegpu
else "cpu"
if not utils.koboldai_vars.hascuda
or not utils.koboldai_vars.breakmodel
or not self.breakmodel
else breakmodel.primary_device
)
else:
@@ -462,12 +478,12 @@ class HFTorchInferenceModel(HFInferenceModel):
)
device = (
utils.koboldai_vars.gpu_device
if utils.koboldai_vars.hascuda and utils.koboldai_vars.usegpu
if utils.koboldai_vars.hascuda and self.usegpu
else "disk"
if layer < disk_blocks and layer < ram_blocks
else "cpu"
if not utils.koboldai_vars.hascuda
or not utils.koboldai_vars.breakmodel
or not self.breakmodel
else "shared"
if layer < ram_blocks
else bisect.bisect_right(
@@ -535,11 +551,9 @@ class HFTorchInferenceModel(HFInferenceModel):
last_storage_key = storage_key
if isinstance(f, zipfile.ZipExtFile):
f.close()
try:
f = z.open(f"archive/data/{storage_key}")
except:
ziproot = z.namelist()[0].split("/")[0]
f = z.open(f"{ziproot}/data/{storage_key}")
ziproot = z.namelist()[0].split("/")[0]
f = z.open(f"{ziproot}/data/{storage_key}")
current_offset = 0
if current_offset != model_dict[key].seek_offset:
f.read(model_dict[key].seek_offset - current_offset)
@@ -563,6 +577,7 @@ class HFTorchInferenceModel(HFInferenceModel):
)
)
# print(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ", end="", flush=True)
#logger.debug(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ")
model_dict[key] = model_dict[key].materialize(
f, map_location="cpu"
)
@@ -573,15 +588,15 @@ class HFTorchInferenceModel(HFInferenceModel):
and breakmodel.primary_device != "cpu"
and utils.koboldai_vars.hascuda
and (
utils.koboldai_vars.breakmodel
or utils.koboldai_vars.usegpu
self.breakmodel
or self.usegpu
)
and model_dict[key].dtype is torch.float32
):
model_dict[key] = model_dict[key].to(torch.float16)
if breakmodel.primary_device == "cpu" or (
not utils.koboldai_vars.usegpu
and not utils.koboldai_vars.breakmodel
not self.usegpu
and not self.breakmodel
and model_dict[key].dtype is torch.float16
):
model_dict[key] = model_dict[key].to(torch.float32)
@@ -619,14 +634,14 @@ class HFTorchInferenceModel(HFInferenceModel):
and breakmodel.primary_device != "cpu"
and utils.koboldai_vars.hascuda
and (
utils.koboldai_vars.breakmodel
or utils.koboldai_vars.usegpu
self.breakmodel
or self.usegpu
)
):
dtype = torch.float16
if breakmodel.primary_device == "cpu" or (
not utils.koboldai_vars.usegpu
and not utils.koboldai_vars.breakmodel
not self.usegpu
and not self.breakmodel
):
dtype = torch.float32
if (
@@ -682,16 +697,16 @@ class HFTorchInferenceModel(HFInferenceModel):
and breakmodel.primary_device != "cpu"
and utils.koboldai_vars.hascuda
and (
utils.koboldai_vars.breakmodel
or utils.koboldai_vars.usegpu
self.breakmodel
or self.usegpu
)
and model_dict[key].dtype is torch.float32
):
model_dict[key] = model_dict[key].to(torch.float16)
if breakmodel.primary_device == "cpu" or (
not utils.koboldai_vars.usegpu
and not utils.koboldai_vars.breakmodel
not self.usegpu
and not self.breakmodel
and model_dict[key].dtype is torch.float16
):
model_dict[key] = model_dict[key].to(torch.float32)
@@ -730,14 +745,14 @@ class HFTorchInferenceModel(HFInferenceModel):
and breakmodel.primary_device != "cpu"
and utils.koboldai_vars.hascuda
and (
utils.koboldai_vars.breakmodel
or utils.koboldai_vars.usegpu
self.breakmodel
or self.usegpu
)
):
dtype = torch.float16
if breakmodel.primary_device == "cpu" or (
not utils.koboldai_vars.usegpu
and not utils.koboldai_vars.breakmodel
not self.usegpu
and not self.breakmodel
):
dtype = torch.float32
if (
@@ -771,7 +786,7 @@ class HFTorchInferenceModel(HFInferenceModel):
if always_use or (
utils.koboldai_vars.hascuda
and self.low_mem
and (utils.koboldai_vars.usegpu or utils.koboldai_vars.breakmodel)
and (self.usegpu or self.breakmodel)
):
original_dtype = torch.get_default_dtype()
torch.set_default_dtype(torch.float16)
@@ -786,6 +801,8 @@ class HFTorchInferenceModel(HFInferenceModel):
device_count = torch.cuda.device_count()
if device_count < 2:
primary = None
logger.debug("n_layers: {}".format(n_layers))
logger.debug("gpu blocks: {}".format(breakmodel.gpu_blocks))
gpu_blocks = breakmodel.gpu_blocks + (
device_count - len(breakmodel.gpu_blocks)
) * [0]
@@ -816,155 +833,47 @@ class HFTorchInferenceModel(HFInferenceModel):
n_layers = utils.num_layers(config)
logger.debug("gpu blocks before modification: {}".format(breakmodel.gpu_blocks))
if utils.args.cpu:
breakmodel.gpu_blocks = [0] * n_layers
return
elif (
utils.args.breakmodel_gpulayers is not None
or utils.args.breakmodel_disklayers is not None
):
try:
if not utils.args.breakmodel_gpulayers:
breakmodel.gpu_blocks = []
else:
breakmodel.gpu_blocks = list(
map(int, utils.args.breakmodel_gpulayers.split(","))
)
assert len(breakmodel.gpu_blocks) <= torch.cuda.device_count()
s = n_layers
for i in range(len(breakmodel.gpu_blocks)):
if breakmodel.gpu_blocks[i] <= -1:
breakmodel.gpu_blocks[i] = s
break
else:
s -= breakmodel.gpu_blocks[i]
assert sum(breakmodel.gpu_blocks) <= n_layers
n_layers -= sum(breakmodel.gpu_blocks)
if utils.args.breakmodel_disklayers is not None:
assert utils.args.breakmodel_disklayers <= n_layers
breakmodel.disk_blocks = utils.args.breakmodel_disklayers
n_layers -= utils.args.breakmodel_disklayers
except:
logger.warning(
"--breakmodel_gpulayers is malformatted. Please use the --help option to see correct usage of --breakmodel_gpulayers. Defaulting to all layers on device 0."
)
breakmodel.gpu_blocks = [n_layers]
n_layers = 0
elif utils.args.breakmodel_layers is not None:
breakmodel.gpu_blocks = [
n_layers - max(0, min(n_layers, utils.args.breakmodel_layers))
]
n_layers -= sum(breakmodel.gpu_blocks)
elif utils.args.model is not None:
elif breakmodel.gpu_blocks == []:
logger.info("Breakmodel not specified, assuming GPU 0")
breakmodel.gpu_blocks = [n_layers]
n_layers = 0
else:
device_count = torch.cuda.device_count()
if device_count > 1:
print(
Colors.CYAN
+ "\nPlease select one of your GPUs to be your primary GPU."
)
print(
"VRAM usage in your primary GPU will be higher than for your other ones."
)
print("It is recommended you make your fastest GPU your primary GPU.")
self.breakmodel_device_list(n_layers)
while True:
primaryselect = input("device ID> ")
if (
primaryselect.isnumeric()
and 0 <= int(primaryselect) < device_count
):
breakmodel.primary_device = int(primaryselect)
break
else:
print(
f"{Colors.RED}Please enter an integer between 0 and {device_count-1}.{Colors.END}"
)
else:
breakmodel.primary_device = 0
print(
Colors.PURPLE
+ "\nIf you don't have enough VRAM to run the model on a single GPU"
)
print(
"you can split the model between your CPU and your GPU(s), or between"
)
print("multiple GPUs if you have more than one.")
print("By putting more 'layers' on a GPU or CPU, more computations will be")
print(
"done on that device and more VRAM or RAM will be required on that device"
)
print("(roughly proportional to number of layers).")
print(
"It should be noted that GPUs are orders of magnitude faster than the CPU."
)
print(
f"This model has{Colors.YELLOW} {n_layers} {Colors.PURPLE}layers.{Colors.END}\n"
)
for i in range(device_count):
self.breakmodel_device_list(
n_layers, primary=breakmodel.primary_device, selected=i
)
print(
f"{Colors.CYAN}\nHow many of the remaining{Colors.YELLOW} {n_layers} {Colors.CYAN}layers would you like to put into device {i}?\nYou can also enter -1 to allocate all remaining layers to this device.{Colors.END}\n"
)
while True:
layerselect = input("# of layers> ")
if (
layerselect.isnumeric() or layerselect.strip() == "-1"
) and -1 <= int(layerselect) <= n_layers:
layerselect = int(layerselect)
layerselect = n_layers if layerselect == -1 else layerselect
breakmodel.gpu_blocks.append(layerselect)
n_layers -= layerselect
break
else:
print(
f"{Colors.RED}Please enter an integer between -1 and {n_layers}.{Colors.END}"
)
if n_layers == 0:
s = n_layers
for i in range(len(breakmodel.gpu_blocks)):
if breakmodel.gpu_blocks[i] <= -1:
breakmodel.gpu_blocks[i] = s
break
if n_layers > 0:
self.breakmodel_device_list(
n_layers, primary=breakmodel.primary_device, selected=-1
)
print(
f"{Colors.CYAN}\nHow many of the remaining{Colors.YELLOW} {n_layers} {Colors.CYAN}layers would you like to put into the disk cache?\nYou can also enter -1 to allocate all remaining layers to this device.{Colors.END}\n"
)
while True:
layerselect = input("# of layers> ")
if (
layerselect.isnumeric() or layerselect.strip() == "-1"
) and -1 <= int(layerselect) <= n_layers:
layerselect = int(layerselect)
layerselect = n_layers if layerselect == -1 else layerselect
breakmodel.disk_blocks = layerselect
n_layers -= layerselect
break
else:
print(
f"{Colors.RED}Please enter an integer between -1 and {n_layers}.{Colors.END}"
)
else:
s -= breakmodel.gpu_blocks[i]
assert sum(breakmodel.gpu_blocks) <= n_layers
n_layers -= sum(breakmodel.gpu_blocks)
if breakmodel.disk_blocks is not None:
assert breakmodel.disk_blocks <= n_layers
n_layers -= breakmodel.disk_blocks
logger.init_ok("Final device configuration:", status="Info")
self.breakmodel_device_list(n_layers, primary=breakmodel.primary_device)
with open("settings/{}.breakmodel".format(self.model_name.replace("/", "_")), "w") as file:
file.write("{}\n{}".format(",".join(map(str, breakmodel.gpu_blocks)), breakmodel.disk_blocks))
# If all layers are on the same device, use the old GPU generation mode
while len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] == 0:
breakmodel.gpu_blocks.pop()
self.breakmodel = True
if len(breakmodel.gpu_blocks) and breakmodel.gpu_blocks[-1] in (
-1,
utils.num_layers(config),
):
utils.koboldai_vars.breakmodel = False
utils.koboldai_vars.usegpu = True
logger.debug("All layers on same GPU. Breakmodel disabled")
self.breakmodel = False
self.usegpu = True
utils.koboldai_vars.gpu_device = len(breakmodel.gpu_blocks) - 1
return
@@ -973,6 +882,6 @@ class HFTorchInferenceModel(HFInferenceModel):
import breakmodel
breakmodel.primary_device = "cpu"
utils.koboldai_vars.breakmodel = False
utils.koboldai_vars.usegpu = False
self.breakmodel = False
self.usegpu = False
return

View File

@@ -1,10 +1,11 @@
from __future__ import annotations
import time
import time, json
import torch
import requests
import numpy as np
from typing import List, Optional, Union
import os
import utils
from logger import logger
@@ -16,25 +17,131 @@ from modeling.inference_model import (
ModelCapabilities,
)
model_backend_name = "Horde"
class HordeException(Exception):
"""To be used for errors on server side of the Horde."""
class HordeInferenceModel(InferenceModel):
class model_backend(InferenceModel):
def __init__(self) -> None:
super().__init__()
self.url = "https://horde.koboldai.net"
self.key = "0000000000"
self.models = self.get_cluster_models()
self.model_name = "Horde"
self.model = []
# Do not allow API to be served over the API
self.capabilties = ModelCapabilities(api_host=False)
def is_valid(self, model_name, model_path, menu_path):
logger.debug("Horde Models: {}".format(self.models))
return model_name == "CLUSTER" or model_name in [x['value'] for x in self.models]
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
if os.path.exists("settings/api.model_backend.settings") and 'base_url' not in vars(self):
with open("settings/horde.model_backend.settings", "r") as f:
temp = json.load(f)
self.base_url = temp['url']
self.key = temp['key']
if 'key' in parameters:
self.key = parameters['key']
if 'url' in parameters:
self.url = parameters['url']
requested_parameters = []
requested_parameters.extend([{
"uitype": "text",
"unit": "text",
"label": "URL",
"id": "url",
"default": self.url if 'url' not in parameters else parameters['url'],
"tooltip": "URL to the horde.",
"menu_path": "",
"check": {"value": "", 'check': "!="},
"refresh_model_inputs": True,
"extra_classes": ""
},
{
"uitype": "text",
"unit": "text",
"label": "Key",
"id": "key",
"default": self.key if 'key' not in parameters else parameters['key'],
"check": {"value": "", 'check': "!="},
"tooltip": "User Key to use when connecting to Horde (0000000000 is anonymous).",
"menu_path": "",
"refresh_model_inputs": True,
"extra_classes": ""
},
{
"uitype": "dropdown",
"unit": "text",
"label": "Model",
"id": "model",
"default": model_name,
"check": {"value": "", 'check': "!="},
'multiple': True,
"tooltip": "Which model to use when running OpenAI/GooseAI.",
"menu_path": "",
"refresh_model_inputs": False,
"extra_classes": "",
'children': self.models,
}])
return requested_parameters
def set_input_parameters(self, parameters):
self.key = parameters['key'].strip()
self.model = parameters['model']
self.url = parameters['url']
def get_cluster_models(self):
# Get list of models from public cluster
try:
req = requests.get(f"{self.url}/api/v2/status/models?type=text")
except:
logger.init_err("KAI Horde Models", status="Failed")
logger.error("Provided KoboldAI Horde URL unreachable")
emit('from_server', {'cmd': 'errmsg', 'data': "Provided KoboldAI Horde URL unreachable"})
return
if not req.ok:
# Something went wrong, print the message and quit since we can't initialize an engine
logger.init_err("KAI Horde Models", status="Failed")
logger.error(req.json())
emit('from_server', {'cmd': 'errmsg', 'data': req.json()}, room="UI_1")
return
engines = req.json()
try:
engines = [{"text": "All", "value": "all"}] + [{"text": en["name"], "value": en["name"]} for en in engines]
except:
logger.error(engines)
raise
logger.debug(engines)
online_model = ""
logger.init_ok("KAI Horde Models", status="OK")
return engines
def _load(self, save_model: bool, initial_load: bool) -> None:
tokenizer_name = "gpt2"
if len(self.model) > 0:
if self.model[0] == "all" and len(self.model) > 1:
tokenizer_name = self.model[1]
else:
tokenizer_name = self.model[0]
self.tokenizer = self._get_tokenizer(
utils.koboldai_vars.cluster_requested_models[0]
if len(utils.koboldai_vars.cluster_requested_models) > 0
else "gpt2",
tokenizer_name
)
def _save_settings(self):
with open("settings/horde.model_backend.settings", "w") as f:
json.dump({"key": self.key, "url": self.url}, f, indent="")
def _raw_generate(
self,
prompt_tokens: Union[List[int], torch.Tensor],
@@ -80,14 +187,14 @@ class HordeInferenceModel(InferenceModel):
client_agent = "KoboldAI:2.0.0:koboldai.org"
cluster_headers = {
"apikey": utils.koboldai_vars.horde_api_key,
"apikey": self.key,
"Client-Agent": client_agent,
}
try:
# Create request
req = requests.post(
f"{utils.koboldai_vars.horde_url}/api/v2/generate/text/async",
f"{self.url}/api/v2/generate/text/async",
json=cluster_metadata,
headers=cluster_headers,
)
@@ -125,7 +232,7 @@ class HordeInferenceModel(InferenceModel):
while not finished:
try:
req = requests.get(
f"{utils.koboldai_vars.horde_url}/api/v2/generate/text/status/{request_id}",
f"{self.url}/api/v2/generate/text/status/{request_id}",
headers=cluster_agent_headers,
)
except requests.exceptions.ConnectionError:

View File

@@ -1,106 +0,0 @@
import torch
import requests
import numpy as np
from typing import List, Optional, Union
import utils
from logger import logger
from modeling.inference_model import (
GenerationResult,
GenerationSettings,
InferenceModel,
)
class OpenAIAPIError(Exception):
def __init__(self, error_type: str, error_message) -> None:
super().__init__(f"{error_type}: {error_message}")
class OpenAIAPIInferenceModel(InferenceModel):
"""InferenceModel for interfacing with OpenAI's generation API."""
def _load(self, save_model: bool, initial_load: bool) -> None:
self.tokenizer = self._get_tokenizer("gpt2")
def _raw_generate(
self,
prompt_tokens: Union[List[int], torch.Tensor],
max_new: int,
gen_settings: GenerationSettings,
single_line: bool = False,
batch_count: int = 1,
seed: Optional[int] = None,
**kwargs,
) -> GenerationResult:
if seed is not None:
logger.warning(
"Seed is unsupported on the OpenAIAPIInferenceModel. Seed will be ignored."
)
decoded_prompt = utils.decodenewlines(self.tokenizer.decode(prompt_tokens))
# Store context in memory to use it for comparison with generated content
utils.koboldai_vars.lastctx = decoded_prompt
# Build request JSON data
# GooseAI is a subntype of OAI. So to check if it's this type, we check the configname as a workaround
# as the koboldai_vars.model will always be OAI
if "GooseAI" in utils.koboldai_vars.configname:
reqdata = {
"prompt": decoded_prompt,
"max_tokens": max_new,
"temperature": gen_settings.temp,
"top_a": gen_settings.top_a,
"top_p": gen_settings.top_p,
"top_k": gen_settings.top_k,
"tfs": gen_settings.tfs,
"typical_p": gen_settings.typical,
"repetition_penalty": gen_settings.rep_pen,
"repetition_penalty_slope": gen_settings.rep_pen_slope,
"repetition_penalty_range": gen_settings.rep_pen_range,
"n": batch_count,
# TODO: Implement streaming
"stream": False,
}
else:
reqdata = {
"prompt": decoded_prompt,
"max_tokens": max_new,
"temperature": gen_settings.temp,
"top_p": gen_settings.top_p,
"frequency_penalty": gen_settings.rep_pen,
"n": batch_count,
"stream": False,
}
req = requests.post(
utils.koboldai_vars.oaiurl,
json=reqdata,
headers={
"Authorization": "Bearer " + utils.koboldai_vars.oaiapikey,
"Content-Type": "application/json",
},
)
j = req.json()
if not req.ok:
# Send error message to web client
if "error" in j:
error_type = j["error"]["type"]
error_message = j["error"]["message"]
else:
error_type = "Unknown"
error_message = "Unknown"
raise OpenAIAPIError(error_type, error_message)
outputs = [out["text"] for out in j["choices"]]
return GenerationResult(
model=self,
out_batches=np.array([self.tokenizer.encode(x) for x in outputs]),
prompt=prompt_tokens,
is_whole_generation=True,
single_line=single_line,
)

View File

@@ -0,0 +1,33 @@
import torch
import requests
import numpy as np
from typing import List, Optional, Union
import os
import utils
from logger import logger
from modeling.inference_model import (
GenerationResult,
GenerationSettings,
InferenceModel,
)
from modeling.inference_models.openai_gooseai import model_backend as openai_gooseai_model_backend
model_backend_name = "OpenAI"
class OpenAIAPIError(Exception):
def __init__(self, error_type: str, error_message) -> None:
super().__init__(f"{error_type}: {error_message}")
class model_backend(openai_gooseai_model_backend):
"""InferenceModel for interfacing with OpenAI's generation API."""
def __init__(self):
super().__init__()
self.url = "https://api.openai.com/v1/engines"
self.source = "OpenAI"
def is_valid(self, model_name, model_path, menu_path):
return model_name == "OAI"

View File

@@ -0,0 +1,199 @@
import torch
import requests,json
import numpy as np
from typing import List, Optional, Union
import os
import utils
from logger import logger
from modeling.inference_model import (
GenerationResult,
GenerationSettings,
InferenceModel,
)
class OpenAIAPIError(Exception):
def __init__(self, error_type: str, error_message) -> None:
super().__init__(f"{error_type}: {error_message}")
class model_backend(InferenceModel):
"""InferenceModel for interfacing with OpenAI's generation API."""
def __init__(self):
super().__init__()
self.key = ""
self.url = "https://api.goose.ai/v1/engines"
def is_valid(self, model_name, model_path, menu_path):
return model_name == "OAI" or model_name == "GooseAI"
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
if os.path.exists("settings/{}.model_backend.settings".format(self.source)) and 'colaburl' not in vars(self):
with open("settings/{}.model_backend.settings".format(self.source), "r") as f:
try:
self.key = json.load(f)['key']
except:
pass
if 'key' in parameters:
self.key = parameters['key']
self.source = model_name
requested_parameters = []
requested_parameters.extend([{
"uitype": "text",
"unit": "text",
"label": "Key",
"id": "key",
"default": self.key,
"check": {"value": "", 'check': "!="},
"tooltip": "User Key to use when connecting to OpenAI/GooseAI.",
"menu_path": "",
"refresh_model_inputs": True,
"extra_classes": ""
},
{
"uitype": "dropdown",
"unit": "text",
"label": "Model",
"id": "model",
"default": "",
"check": {"value": "", 'check': "!="},
"tooltip": "Which model to use when running OpenAI/GooseAI.",
"menu_path": "",
"refresh_model_inputs": False,
"extra_classes": "",
'children': self.get_oai_models(),
}])
return requested_parameters
def set_input_parameters(self, parameters):
self.key = parameters['key'].strip()
self.model_name = parameters['model']
def get_oai_models(self):
if self.key == "":
return []
# Get list of models from OAI
logger.init("OAI Engines", status="Retrieving")
req = requests.get(
self.url,
headers = {
'Authorization': 'Bearer '+self.key
}
)
if(req.status_code == 200):
r = req.json()
engines = r["data"]
try:
engines = [{"value": en["id"], "text": "{} ({})".format(en['id'], "Ready" if en["ready"] == True else "Not Ready")} for en in engines]
except:
logger.error(engines)
raise
online_model = ""
logger.init_ok("OAI Engines", status="OK")
logger.debug("OAI Engines: {}".format(engines))
return engines
else:
# Something went wrong, print the message and quit since we can't initialize an engine
logger.init_err("OAI Engines", status="Failed")
logger.error(req.json())
emit('from_server', {'cmd': 'errmsg', 'data': req.json()})
return []
def _load(self, save_model: bool, initial_load: bool) -> None:
self.tokenizer = self._get_tokenizer("gpt2")
def _save_settings(self):
with open("settings/{}.model_backend.settings".format(self.source), "w") as f:
json.dump({"key": self.key}, f, indent="")
def _raw_generate(
self,
prompt_tokens: Union[List[int], torch.Tensor],
max_new: int,
gen_settings: GenerationSettings,
single_line: bool = False,
batch_count: int = 1,
seed: Optional[int] = None,
**kwargs,
) -> GenerationResult:
if seed is not None:
logger.warning(
"Seed is unsupported on the OpenAIAPIInferenceModel. Seed will be ignored."
)
decoded_prompt = utils.decodenewlines(self.tokenizer.decode(prompt_tokens))
# Store context in memory to use it for comparison with generated content
utils.koboldai_vars.lastctx = decoded_prompt
# Build request JSON data
# GooseAI is a subntype of OAI. So to check if it's this type, we check the configname as a workaround
# as the koboldai_vars.model will always be OAI
if self.source == "GooseAI":
reqdata = {
"prompt": decoded_prompt,
"max_tokens": max_new,
"temperature": gen_settings.temp,
"top_a": gen_settings.top_a,
"top_p": gen_settings.top_p,
"top_k": gen_settings.top_k,
"tfs": gen_settings.tfs,
"typical_p": gen_settings.typical,
"repetition_penalty": gen_settings.rep_pen,
"repetition_penalty_slope": gen_settings.rep_pen_slope,
"repetition_penalty_range": gen_settings.rep_pen_range,
"n": batch_count,
# TODO: Implement streaming
"stream": False,
}
else:
reqdata = {
"prompt": decoded_prompt,
"max_tokens": max_new,
"temperature": gen_settings.temp,
"top_p": gen_settings.top_p,
"frequency_penalty": gen_settings.rep_pen,
"n": batch_count,
"stream": False,
}
req = requests.post(
"{}/{}/completions".format(self.url, self.model_name),
json=reqdata,
headers={
"Authorization": "Bearer " + self.key,
"Content-Type": "application/json",
},
)
j = req.json()
if not req.ok:
# Send error message to web client
if "error" in j:
error_type = j["error"]["type"]
error_message = j["error"]["message"]
else:
error_type = "Unknown"
error_message = "Unknown"
raise OpenAIAPIError(error_type, error_message)
outputs = [out["text"] for out in j["choices"]]
return GenerationResult(
model=self,
out_batches=np.array([self.tokenizer.encode(x) for x in outputs]),
prompt=prompt_tokens,
is_whole_generation=True,
single_line=single_line,
)

View File

@@ -0,0 +1,78 @@
from __future__ import annotations
import torch
import requests
import numpy as np
from typing import List, Optional, Union
import utils
from logger import logger
from modeling.inference_model import (
GenerationResult,
GenerationSettings,
InferenceModel,
ModelCapabilities,
)
model_backend_name = "Read Only"
class BasicAPIException(Exception):
"""To be used for errors when using the Basic API as an interface."""
class model_backend(InferenceModel):
def __init__(self) -> None:
super().__init__()
# Do not allow API to be served over the API
self.capabilties = ModelCapabilities(api_host=False)
self.tokenizer = self._tokenizer()
self.model = None
self.model_name = "Read Only"
def is_valid(self, model_name, model_path, menu_path):
return model_name == "ReadOnly"
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
requested_parameters = []
return requested_parameters
def set_input_parameters(self, parameters):
return
def unload(self):
utils.koboldai_vars.noai = False
def _initialize_model(self):
return
class _tokenizer():
def __init__(self):
self._koboldai_header = []
def decode(self, _input):
return ""
def encode(self, input_text):
return []
def _load(self, save_model: bool = False, initial_load: bool = False) -> None:
self.tokenizer = self.tokenizer
self.model = None
utils.koboldai_vars.noai = True
def _raw_generate(
self,
prompt_tokens: Union[List[int], torch.Tensor],
max_new: int,
gen_settings: GenerationSettings,
single_line: bool = False,
batch_count: int = 1,
seed: Optional[int] = None,
**kwargs,
):
return GenerationResult(
model=self,
out_batches=np.array([]),
prompt=prompt_tokens,
is_whole_generation=True,
single_line=single_line,
)

View File

@@ -1,237 +0,0 @@
from __future__ import annotations
import os
import time
from typing import Dict, List, Optional, Union
import numpy as np
import requests
from tokenizers import Tokenizer
from tqdm import tqdm
from huggingface_hub import hf_hub_url
import torch
from torch.nn import functional as F
# Must be defined before import
os.environ["RWKV_JIT_ON"] = "1"
# TODO: Include compiled kernel
os.environ["RWKV_CUDA_ON"] = "1"
from rwkv.model import RWKV
import utils
from logger import logger
from modeling import warpers
from modeling.warpers import Warper
from modeling.stoppers import Stoppers
from modeling.post_token_hooks import PostTokenHooks
from modeling.tokenizer import GenericTokenizer
from modeling.inference_model import (
GenerationResult,
GenerationSettings,
InferenceModel,
ModelCapabilities,
)
TOKENIZER_URL = (
"https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/20B_tokenizer.json"
)
TOKENIZER_PATH = "models/rwkv/20b_tokenizer.json"
REPO_OWNER = "BlinkDL"
MODEL_FILES = {
"rwkv-4-pile-14b": "RWKV-4-Pile-14B-20230213-8019.pth",
# NOTE: Still in progress(?)
"rwkv-4-pile-14b:ctx4096": "RWKV-4-Pile-14B-20230228-ctx4096-test663.pth",
"rwkv-4-pile-7b": "RWKV-4-Pile-7B-20221115-8047.pth",
"rwkv-4-pile-7b:ctx4096": "RWKV-4-Pile-7B-20230109-ctx4096.pth",
"rwkv-4-pile-3b": "RWKV-4-Pile-3B-20221008-8023.pth",
"rwkv-4-pile-3b:ctx4096": "RWKV-4-Pile-3B-20221110-ctx4096.pth",
"rwkv-4-pile-1b5": "RWKV-4-Pile-1B5-20220903-8040.pth",
"rwkv-4-pile-1b5:ctx4096": "RWKV-4-Pile-1B5-20220929-ctx4096.pth",
"rwkv-4-pile-430m": "RWKV-4-Pile-430M-20220808-8066.pth",
"rwkv-4-pile-169m": "RWKV-4-Pile-169M-20220807-8023.pth",
}
class RWKVInferenceModel(InferenceModel):
def __init__(
self,
model_name: str,
) -> None:
super().__init__()
self.model_name = model_name
self.post_token_hooks = [
PostTokenHooks.stream_tokens,
]
self.stopper_hooks = [
Stoppers.core_stopper,
Stoppers.dynamic_wi_scanner,
Stoppers.singleline_stopper,
Stoppers.chat_mode_stopper,
Stoppers.stop_sequence_stopper,
]
self.capabilties = ModelCapabilities(
embedding_manipulation=False,
post_token_hooks=True,
stopper_hooks=True,
post_token_probs=True,
)
self._old_stopping_criteria = None
def _ensure_directory_structure(self) -> None:
for path in ["models/rwkv", "models/rwkv/models"]:
try:
os.mkdir(path)
except FileExistsError:
pass
def _get_tokenizer(self) -> GenericTokenizer:
if not os.path.exists(TOKENIZER_PATH):
logger.info("RWKV tokenizer not found, downloading...")
r = requests.get(TOKENIZER_URL)
with open(TOKENIZER_PATH, "wb") as file:
file.write(r.content)
return GenericTokenizer(Tokenizer.from_file(TOKENIZER_PATH))
def _download_model(self, model_path: str, model_class: str) -> None:
logger.info(f"{self.model_name} not found, downloading...")
url = hf_hub_url(
repo_id=f"{REPO_OWNER}/{model_class}",
filename=MODEL_FILES[self.model_name],
)
# TODO: Use aria2
# https://stackoverflow.com/a/57030446
with requests.get(url, stream=True) as r:
r.raise_for_status()
bar = tqdm(
desc="Downloading RWKV Model",
unit="B",
unit_scale=True,
total=int(r.headers["Content-Length"]),
)
with open(model_path, "wb") as file:
for chunk in r.iter_content(chunk_size=8192):
if not chunk:
continue
file.write(chunk)
bar.update(len(chunk))
def _load(self, save_model: bool, initial_load: bool) -> None:
self._ensure_directory_structure()
self.tokenizer = self._get_tokenizer()
# Parse model name
model_class, _, special = self.model_name.partition(":")
special = special or None
model_dir = os.path.join("models", "rwkv", "models", model_class)
if not os.path.exists(model_dir):
os.mkdir(model_dir)
# Download model if we need to
model_path = os.path.join(model_dir, MODEL_FILES[self.model_name])
if not os.path.exists(model_path):
self._download_model(model_path, model_class)
# Now we load!
# TODO: Breakmodel to strat
self.model = RWKV(model=model_path, strategy="cuda:0 fp16")
def _apply_warpers(
self, scores: torch.Tensor, input_ids: torch.Tensor
) -> torch.Tensor:
warpers.update_settings()
for sid in utils.koboldai_vars.sampler_order:
warper = Warper.from_id(sid)
if not warper.value_is_valid():
continue
if warper == warpers.RepetitionPenalty:
# Rep pen needs more data than other samplers
scores = warper.torch(scores, input_ids=input_ids)
else:
scores = warper.torch(scores)
return scores
def _sample_token(self, logits: torch.Tensor, input_ids: torch.Tensor) -> int:
probs = F.softmax(logits.float(), dim=-1)
if probs.device == torch.device("cpu"):
probs = probs.numpy()
sorted_ids = np.argsort(probs)
sorted_probs = probs[sorted_ids][::-1]
probs = self._apply_warpers(probs[None, :], input_ids)
# TODO: is this right?
probs[probs == -torch.inf] = 0.0
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return int(out)
else:
sorted_ids = torch.argsort(probs)
sorted_probs = probs[sorted_ids]
sorted_probs = torch.flip(sorted_probs, dims=(0,))
probs = self._apply_warpers(probs[None, :], input_ids)
# TODO: is this right?
probs[probs == -torch.inf] = 0.0
out = torch.multinomial(probs, num_samples=1)[0]
return int(out)
def _raw_generate(
self,
prompt_tokens: Union[List[int], torch.Tensor],
max_new: int,
gen_settings: GenerationSettings,
single_line: bool = False,
batch_count: int = 1,
seed: Optional[int] = None,
**kwargs,
) -> GenerationResult:
if seed is not None:
torch.manual_seed(seed)
aux_device = utils.get_auxilary_device()
context = torch.tensor(prompt_tokens)[None, :].to(aux_device)
out = []
start_time = time.time()
with torch.no_grad():
logits, state = self.model.forward(prompt_tokens, None)
last_token = prompt_tokens[-1]
for _ in range(max_new):
logits, state = self.model.forward([last_token], state)
last_token = self._sample_token(logits, context)
out.append(last_token)
add = torch.tensor([[last_token]]).to(aux_device)
context = torch.cat((context, add), dim=-1)
self._post_token_gen(context)
logger.debug(
"torch_raw_generate: run generator {}s".format(time.time() - start_time)
)
return GenerationResult(
self,
out_batches=torch.tensor([out]),
prompt=prompt_tokens,
is_whole_generation=False,
output_includes_prompt=True,
)