mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
IPEX Torch 2.1
This commit is contained in:
@@ -25,10 +25,8 @@ dependencies:
|
||||
- ffmpeg
|
||||
- pip:
|
||||
- --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
- torch==2.0.1a0; sys_platform == 'linux'
|
||||
- torch==2.0.0a0; sys_platform == 'win32'
|
||||
- intel_extension_for_pytorch==2.0.110+xpu; sys_platform == 'linux'
|
||||
- intel_extension_for_pytorch==2.0.110+gitba7f6c1; sys_platform == 'win32'
|
||||
- torch==2.1.0a0
|
||||
- intel-extension-for-pytorch==2.1.10+xpu
|
||||
- openvino
|
||||
- onnxruntime-openvino
|
||||
- flask-cloudflared==0.0.10
|
||||
|
@@ -4,7 +4,6 @@ import contextlib
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
||||
from .hijacks import ipex_hijacks
|
||||
from .attention import attention_init
|
||||
|
||||
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
||||
|
||||
@@ -157,15 +156,9 @@ def ipex_init(): # pylint: disable=too-many-statements
|
||||
torch.cuda.get_device_properties.minor = 7
|
||||
torch.cuda.ipc_collect = lambda *args, **kwargs: None
|
||||
torch.cuda.utilization = lambda *args, **kwargs: 0
|
||||
if hasattr(torch.xpu, 'getDeviceIdListForCard'):
|
||||
torch.cuda.getDeviceIdListForCard = torch.xpu.getDeviceIdListForCard
|
||||
torch.cuda.get_device_id_list_per_card = torch.xpu.getDeviceIdListForCard
|
||||
else:
|
||||
torch.cuda.getDeviceIdListForCard = torch.xpu.get_device_id_list_per_card
|
||||
torch.cuda.get_device_id_list_per_card = torch.xpu.get_device_id_list_per_card
|
||||
|
||||
ipex_hijacks()
|
||||
attention_init()
|
||||
if not torch.xpu.has_fp64_dtype():
|
||||
try:
|
||||
from .diffusers import ipex_diffusers
|
||||
ipex_diffusers()
|
||||
|
@@ -4,10 +4,7 @@ import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unuse
|
||||
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
||||
|
||||
original_torch_bmm = torch.bmm
|
||||
def torch_bmm(input, mat2, *, out=None):
|
||||
if input.dtype != mat2.dtype:
|
||||
mat2 = mat2.to(input.dtype)
|
||||
|
||||
def torch_bmm_32_bit(input, mat2, *, out=None):
|
||||
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
|
||||
batch_size_attention, input_tokens, mat2_shape = input.shape[0], input.shape[1], mat2.shape[2]
|
||||
block_multiply = input.element_size()
|
||||
@@ -64,7 +61,7 @@ def torch_bmm(input, mat2, *, out=None):
|
||||
return hidden_states
|
||||
|
||||
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
||||
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
|
||||
def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
|
||||
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
|
||||
if len(query.shape) == 3:
|
||||
batch_size_attention, query_tokens, shape_four = query.shape
|
||||
@@ -74,11 +71,6 @@ def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.
|
||||
shape_one, batch_size_attention, query_tokens, shape_four = query.shape
|
||||
no_shape_one = False
|
||||
|
||||
if query.dtype != key.dtype:
|
||||
key = key.to(dtype=query.dtype)
|
||||
if query.dtype != value.dtype:
|
||||
value = value.to(dtype=query.dtype)
|
||||
|
||||
block_multiply = query.element_size()
|
||||
slice_block_size = shape_one * query_tokens * shape_four / 1024 / 1024 * block_multiply
|
||||
block_size = batch_size_attention * slice_block_size
|
||||
@@ -155,8 +147,3 @@ def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.
|
||||
query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal
|
||||
)
|
||||
return hidden_states
|
||||
|
||||
def attention_init():
|
||||
#ARC GPUs can't allocate more than 4GB to a single block:
|
||||
torch.bmm = torch_bmm
|
||||
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import torch
|
||||
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
||||
import diffusers #0.21.1 # pylint: disable=import-error
|
||||
import diffusers #0.24.0 # pylint: disable=import-error
|
||||
from diffusers.models.attention_processor import Attention
|
||||
|
||||
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
||||
|
@@ -5,6 +5,7 @@ import intel_extension_for_pytorch._C as core # pylint: disable=import-error, un
|
||||
|
||||
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
||||
|
||||
device_supports_fp64 = torch.xpu.has_fp64_dtype()
|
||||
OptState = ipex.cpu.autocast._grad_scaler.OptState
|
||||
_MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator
|
||||
_refresh_per_optimizer_state = ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state
|
||||
@@ -96,6 +97,9 @@ def unscale_(self, optimizer):
|
||||
|
||||
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
|
||||
assert self._scale is not None
|
||||
if device_supports_fp64:
|
||||
inv_scale = self._scale.double().reciprocal().float()
|
||||
else:
|
||||
inv_scale = self._scale.to("cpu").double().reciprocal().float().to(self._scale.device)
|
||||
found_inf = torch.full(
|
||||
(1,), 0.0, dtype=torch.float32, device=self._scale.device
|
||||
|
@@ -120,6 +120,32 @@ def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
|
||||
else:
|
||||
return original_linalg_solve(A, B, *args, **kwargs)
|
||||
|
||||
if torch.xpu.has_fp64_dtype():
|
||||
original_torch_bmm = torch.bmm
|
||||
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
||||
else:
|
||||
# 64 bit attention workarounds for Alchemist:
|
||||
try:
|
||||
from .attention import torch_bmm_32_bit as original_torch_bmm
|
||||
from .attention import scaled_dot_product_attention_32_bit as original_scaled_dot_product_attention
|
||||
except Exception: # pylint: disable=broad-exception-caught
|
||||
original_torch_bmm = torch.bmm
|
||||
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
||||
|
||||
# dtype errors:
|
||||
def torch_bmm(input, mat2, *, out=None):
|
||||
if input.dtype != mat2.dtype:
|
||||
mat2 = mat2.to(input.dtype)
|
||||
return original_torch_bmm(input, mat2, out=out)
|
||||
|
||||
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
|
||||
if query.dtype != key.dtype:
|
||||
key = key.to(dtype=query.dtype)
|
||||
if query.dtype != value.dtype:
|
||||
value = value.to(dtype=query.dtype)
|
||||
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal)
|
||||
|
||||
@property
|
||||
def is_cuda(self):
|
||||
return self.device.type == 'xpu'
|
||||
|
||||
@@ -158,7 +184,7 @@ def ipex_hijacks():
|
||||
lambda orig_func, f, map_location=None, pickle_module=None, *, weights_only=False, mmap=None, **kwargs:
|
||||
orig_func(orig_func, f, map_location=return_xpu(map_location), pickle_module=pickle_module, weights_only=weights_only, mmap=mmap, **kwargs),
|
||||
lambda orig_func, f, map_location=None, pickle_module=None, *, weights_only=False, mmap=None, **kwargs: check_device(map_location))
|
||||
|
||||
if hasattr(torch.xpu, "Generator"):
|
||||
CondFunc('torch.Generator',
|
||||
lambda orig_func, device=None: torch.xpu.Generator(return_xpu(device)),
|
||||
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu")
|
||||
@@ -197,7 +223,7 @@ def ipex_hijacks():
|
||||
lambda orig_func, input, pad, mode='constant', value=None: orig_func(input.to(torch.float32), pad, mode=mode, value=value).to(dtype=torch.bfloat16),
|
||||
lambda orig_func, input, pad, mode='constant', value=None: mode == 'reflect' and input.dtype == torch.bfloat16)
|
||||
|
||||
#Diffusers Float64 (ARC GPUs doesn't support double or Float64):
|
||||
# Diffusers Float64 (Alchemist GPUs doesn't support 64 bit):
|
||||
if not torch.xpu.has_fp64_dtype():
|
||||
CondFunc('torch.from_numpy',
|
||||
lambda orig_func, ndarray: orig_func(ndarray.astype('float32')),
|
||||
@@ -210,11 +236,16 @@ def ipex_hijacks():
|
||||
lambda orig_func, *args, **kwargs: True)
|
||||
|
||||
# Functions that make compile mad with CondFunc:
|
||||
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers
|
||||
torch.nn.DataParallel = DummyDataParallel
|
||||
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers
|
||||
|
||||
torch.autocast = ipex_autocast
|
||||
torch.cat = torch_cat
|
||||
torch.linalg.solve = linalg_solve
|
||||
torch.UntypedStorage.is_cuda = is_cuda
|
||||
torch.nn.functional.interpolate = interpolate
|
||||
torch.backends.cuda.sdp_kernel = return_null_context
|
||||
torch.UntypedStorage.is_cuda = is_cuda
|
||||
|
||||
torch.nn.functional.interpolate = interpolate
|
||||
torch.linalg.solve = linalg_solve
|
||||
|
||||
torch.bmm = torch_bmm
|
||||
torch.cat = torch_cat
|
||||
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention
|
||||
|
Reference in New Issue
Block a user