Merge commit 'refs/pull/181/head' of https://github.com/ebolam/KoboldAI into UI2

This commit is contained in:
ebolam
2022-09-28 12:59:53 -04:00
2 changed files with 78 additions and 60 deletions

View File

@@ -46,7 +46,7 @@ from jax.experimental import maps
import jax.numpy as jnp
import numpy as np
import haiku as hk
from transformers import AutoTokenizer, GPT2TokenizerFast, AutoModelForCausalLM, GPTNeoForCausalLM
from transformers import AutoTokenizer, GPT2Tokenizer, AutoModelForCausalLM, GPTNeoForCausalLM
from tokenizers import Tokenizer
from mesh_transformer.checkpoint import read_ckpt_lowmem
from mesh_transformer.transformer_shard import CausalTransformer, CausalTransformerShard, PlaceholderTensor
@@ -1062,7 +1062,7 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
"pe_rotary_dims": 64,
"seq": 2048,
"cores_per_replica": 8,
"tokenizer_class": "GPT2TokenizerFast",
"tokenizer_class": "GPT2Tokenizer",
"tokenizer": "gpt2",
}
params = kwargs
@@ -1080,7 +1080,7 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
"pe_rotary_dims": 24,
"seq": 2048,
"cores_per_replica": 8,
"tokenizer_class": "GPT2TokenizerFast",
"tokenizer_class": "GPT2Tokenizer",
"tokenizer": "gpt2",
}
@@ -1359,45 +1359,45 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
with torch_lazy_loader.use_lazy_torch_load(callback=callback, dematerialized_modules=True):
if(os.path.isdir(koboldai_vars.custmodpth)):
try:
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
except Exception as e:
try:
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e:
try:
tokenizer = GPT2TokenizerFast.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=vars.revision, cache_dir="cache")
except Exception as e:
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
try:
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e:
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))):
try:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
except Exception as e:
try:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache", use_fast=False)
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e:
try:
tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e:
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
try:
model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e:
model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
else:
try:
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
except Exception as e:
try:
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e:
try:
tokenizer = GPT2TokenizerFast.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e:
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
try:
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
except Exception as e: