mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Basic exllama plugin
This commit is contained in:
277
modeling/inference_models/exllama/class.py
Normal file
277
modeling/inference_models/exllama/class.py
Normal file
@@ -0,0 +1,277 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import time, json
|
||||||
|
import torch
|
||||||
|
import requests
|
||||||
|
import numpy as np
|
||||||
|
from typing import List, Optional, Union
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
from pathlib import Path
|
||||||
|
import re
|
||||||
|
|
||||||
|
import utils
|
||||||
|
from logger import logger
|
||||||
|
|
||||||
|
from modeling.inference_model import (
|
||||||
|
GenerationResult,
|
||||||
|
GenerationSettings,
|
||||||
|
InferenceModel,
|
||||||
|
ModelCapabilities,
|
||||||
|
)
|
||||||
|
|
||||||
|
from modeling.tokenizer import GenericTokenizer
|
||||||
|
|
||||||
|
from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
|
||||||
|
from transformers import LlamaTokenizer
|
||||||
|
from exllama.generator import ExLlamaGenerator
|
||||||
|
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
model_backend_name = "ExLlama"
|
||||||
|
|
||||||
|
|
||||||
|
def load_model_gptq_settings(path):
|
||||||
|
try:
|
||||||
|
js = json.load(open(path + "/config.json", "r"))
|
||||||
|
except Exception as e:
|
||||||
|
return False
|
||||||
|
|
||||||
|
gptq_model = False
|
||||||
|
gptq_file = False
|
||||||
|
|
||||||
|
gptq_legacy_files = glob.glob(os.path.join(path, "4bit*.safetensors"))
|
||||||
|
if "gptq_bits" in js:
|
||||||
|
gptq_model = True
|
||||||
|
gptq_file = os.path.join(path, "model.safetensors")
|
||||||
|
elif gptq_legacy_files:
|
||||||
|
gptq_model = True
|
||||||
|
gptq_file = gptq_legacy_files[0]
|
||||||
|
fname = Path(gptq_file).parts[-1]
|
||||||
|
g = re.findall("^(?:4bit)(?:-)(\\d+)(?:g-?)", fname)
|
||||||
|
|
||||||
|
return gptq_model, gptq_file
|
||||||
|
|
||||||
|
|
||||||
|
class model_backend(InferenceModel):
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.model_config = None
|
||||||
|
|
||||||
|
self.model = None
|
||||||
|
self.tokenizer = None
|
||||||
|
|
||||||
|
self.model_name = None
|
||||||
|
self.path = None
|
||||||
|
|
||||||
|
def is_valid(self, model_name, model_path, menu_path):
|
||||||
|
gptq_model, _ = load_model_gptq_settings(model_path)
|
||||||
|
try:
|
||||||
|
self.model_config = self._load_config(model_name, model_path)
|
||||||
|
return self.model_config and gptq_model
|
||||||
|
except:
|
||||||
|
return False
|
||||||
|
|
||||||
|
def get_local_model_path(self):
|
||||||
|
return self.path or os.path.join("models", self.model_name.replace("/", "_"))
|
||||||
|
|
||||||
|
def _load_config(self, model_name, model_path):
|
||||||
|
if model_path is not None and os.path.exists(model_path):
|
||||||
|
return ExLlamaConfig(os.path.join(model_path, "config.json"))
|
||||||
|
if(os.path.exists("models/{}".format(model_name.replace('/', '_')))):
|
||||||
|
return ExLlamaConfig(os.path.join("models/{}".format(model_name.replace('/', '_')), "config.json"))
|
||||||
|
return False
|
||||||
|
|
||||||
|
def _load(self, save_model: bool, initial_load: bool) -> None:
|
||||||
|
self.model = self._get_model(self.get_local_model_path(), {})
|
||||||
|
self.tokenizer = self._get_tokenizer(os.path.join(self.get_local_model_path(), "tokenizer.model"))
|
||||||
|
|
||||||
|
self.cache = ExLlamaCache(self.model)
|
||||||
|
|
||||||
|
self.generator = ExLlamaGenerator(self.model, self.tokenizer.tokenizer, self.cache)
|
||||||
|
|
||||||
|
def _post_load(self) -> None:
|
||||||
|
# Note: self.tokenizer is a GenericTokenizer, and self.tokenizer.tokenizer is the actual LlamaTokenizer
|
||||||
|
self.tokenizer.add_bos_token = False
|
||||||
|
|
||||||
|
# HF transformers no longer supports decode_with_prefix_space
|
||||||
|
# We work around this by wrapping decode, encode, and __call__
|
||||||
|
# with versions that work around the 'prefix space' misfeature
|
||||||
|
# of sentencepiece.
|
||||||
|
vocab = self.tokenizer.convert_ids_to_tokens(range(self.tokenizer.vocab_size))
|
||||||
|
has_prefix_space = {i for i, tok in enumerate(vocab) if tok.startswith("▁")}
|
||||||
|
|
||||||
|
# Wrap 'decode' with a method that always returns text starting with a space
|
||||||
|
# when the head token starts with a space. This is what 'decode_with_prefix_space'
|
||||||
|
# used to do, and we implement it using the same technique (building a cache of
|
||||||
|
# tokens that should have a prefix space, and then prepending a space if the first
|
||||||
|
# token is in this set.) We also work around a bizarre behavior in which decoding
|
||||||
|
# a single token 13 behaves differently than decoding a squence containing only [13].
|
||||||
|
original_decode = type(self.tokenizer.tokenizer).decode
|
||||||
|
def decode_wrapper(self, token_ids, *args, **kwargs):
|
||||||
|
first = None
|
||||||
|
# Note, the code below that wraps single-value token_ids in a list
|
||||||
|
# is to work around this wonky behavior:
|
||||||
|
# >>> t.decode(13)
|
||||||
|
# '<0x0A>'
|
||||||
|
# >>> t.decode([13])
|
||||||
|
# '\n'
|
||||||
|
# Not doing this causes token streaming to receive <0x0A> characters
|
||||||
|
# instead of newlines.
|
||||||
|
if isinstance(token_ids, int):
|
||||||
|
first = token_ids
|
||||||
|
token_ids = [first]
|
||||||
|
elif hasattr(token_ids, 'dim'): # Check for e.g. torch.Tensor
|
||||||
|
# Tensors don't support the Python standard of 'empty is False'
|
||||||
|
# and the special case of dimension 0 tensors also needs to be
|
||||||
|
# handled separately.
|
||||||
|
if token_ids.dim() == 0:
|
||||||
|
first = int(token_ids.item())
|
||||||
|
token_ids = [first]
|
||||||
|
elif len(token_ids) > 0:
|
||||||
|
first = int(token_ids[0])
|
||||||
|
elif token_ids is not None and len(token_ids) > 0:
|
||||||
|
first = token_ids[0]
|
||||||
|
result = original_decode(self, token_ids, *args, **kwargs)
|
||||||
|
if first is not None and first in has_prefix_space:
|
||||||
|
result = " " + result
|
||||||
|
return result
|
||||||
|
# GenericTokenizer overrides __setattr__ so we need to use object.__setattr__ to bypass it
|
||||||
|
object.__setattr__(self.tokenizer, 'decode', decode_wrapper.__get__(self.tokenizer))
|
||||||
|
|
||||||
|
# Wrap encode and __call__ to work around the 'prefix space' misfeature also.
|
||||||
|
# The problem is that "Bob" at the start of text is encoded as if it is
|
||||||
|
# " Bob". This creates a problem because it means you can't split text, encode
|
||||||
|
# the pieces, concatenate the tokens, decode them, and get the original text back.
|
||||||
|
# The workaround is to prepend a known token that (1) starts with a space; and
|
||||||
|
# (2) is not the prefix of any other token. After searching through the vocab
|
||||||
|
# " ," (space comma) is the only token containing only printable ascii characters
|
||||||
|
# that fits this bill. By prepending ',' to the text, the original encode
|
||||||
|
# method always returns [1919, ...], where the tail of the sequence is the
|
||||||
|
# actual encoded result we want without the prefix space behavior.
|
||||||
|
original_encode = type(self.tokenizer.tokenizer).encode
|
||||||
|
def encode_wrapper(self, text, *args, **kwargs):
|
||||||
|
if type(text) is str:
|
||||||
|
text = ',' + text
|
||||||
|
result = original_encode(self, text, *args, **kwargs)
|
||||||
|
result = result[1:]
|
||||||
|
else:
|
||||||
|
result = original_encode(self, text, *args, **kwargs)
|
||||||
|
return result
|
||||||
|
object.__setattr__(self.tokenizer, 'encode', encode_wrapper.__get__(self.tokenizer))
|
||||||
|
|
||||||
|
# Since 'encode' is documented as being deprecated, also override __call__.
|
||||||
|
# This doesn't appear to currently be used by KoboldAI, but doing so
|
||||||
|
# in case someone uses it in the future.
|
||||||
|
original_call = type(self.tokenizer.tokenizer).__call__
|
||||||
|
def call_wrapper(self, text, *args, **kwargs):
|
||||||
|
if type(text) is str:
|
||||||
|
text = ',' + text
|
||||||
|
result = original_call(self, text, *args, **kwargs)
|
||||||
|
result = result[1:]
|
||||||
|
else:
|
||||||
|
result = original_call(self, text, *args, **kwargs)
|
||||||
|
return result
|
||||||
|
object.__setattr__(self.tokenizer, '__call__', call_wrapper.__get__(self.tokenizer))
|
||||||
|
|
||||||
|
def _raw_generate(
|
||||||
|
self,
|
||||||
|
prompt_tokens: Union[List[int], torch.Tensor],
|
||||||
|
max_new: int,
|
||||||
|
gen_settings: GenerationSettings,
|
||||||
|
single_line: bool = False,
|
||||||
|
batch_count: int = 1,
|
||||||
|
seed: Optional[int] = None,
|
||||||
|
**kwargs,
|
||||||
|
) -> GenerationResult:
|
||||||
|
if not isinstance(prompt_tokens, torch.Tensor):
|
||||||
|
gen_in = torch.tensor(prompt_tokens, dtype=torch.long)[None]
|
||||||
|
else:
|
||||||
|
gen_in = prompt_tokens
|
||||||
|
|
||||||
|
self.generator.settings.temperature = max(gen_settings.temp, 0.01)
|
||||||
|
self.generator.settings.top_k = gen_settings.top_k if gen_settings.top_k > 0 else 10000
|
||||||
|
self.generator.settings.top_p = gen_settings.top_p
|
||||||
|
self.generator.settings.min_p = 0.0
|
||||||
|
|
||||||
|
self.generator.gen_begin(gen_in)
|
||||||
|
|
||||||
|
for i in range(max_new):
|
||||||
|
token = self.generator.gen_single_token()
|
||||||
|
if token.item() == self.tokenizer.eos_token_id: break
|
||||||
|
|
||||||
|
return GenerationResult(
|
||||||
|
model=self,
|
||||||
|
out_batches=np.array(
|
||||||
|
self.generator.sequence[:, gen_in.size(1):],
|
||||||
|
),
|
||||||
|
prompt=prompt_tokens,
|
||||||
|
is_whole_generation=True,
|
||||||
|
single_line=single_line,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _get_model(self, location: str, tf_kwargs: Dict):
|
||||||
|
_, self.model_config.model_path = load_model_gptq_settings(location)
|
||||||
|
return ExLlama(self.model_config)
|
||||||
|
|
||||||
|
def _get_tokenizer(self, location: str):
|
||||||
|
tokenizer = GenericTokenizer(LlamaTokenizer.from_pretrained(location))
|
||||||
|
tokenizer._koboldai_header = tokenizer.encode("")
|
||||||
|
return tokenizer
|
||||||
|
|
||||||
|
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
|
||||||
|
requested_parameters = []
|
||||||
|
gpu_count = torch.cuda.device_count()
|
||||||
|
layer_count = self.model_config["n_layer"] if isinstance(self.model_config, dict) else self.model_config.num_layers if hasattr(self.model_config, "num_layers") else self.model_config.n_layer if hasattr(self.model_config, "n_layer") else self.model_config.num_hidden_layers if hasattr(self.model_config, 'num_hidden_layers') else None
|
||||||
|
requested_parameters.append({
|
||||||
|
"uitype": "Valid Display",
|
||||||
|
"unit": "text",
|
||||||
|
"label": "Current Allocated Layers: %1/{}".format(layer_count), #%1 will be the validation value
|
||||||
|
"id": "valid_layers",
|
||||||
|
"max": layer_count,
|
||||||
|
"step": 1,
|
||||||
|
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)], "value": layer_count, 'check': "="},
|
||||||
|
"menu_path": "Layers",
|
||||||
|
"extra_classes": "",
|
||||||
|
"refresh_model_inputs": False
|
||||||
|
})
|
||||||
|
for i in range(gpu_count):
|
||||||
|
requested_parameters.append({
|
||||||
|
"uitype": "slider",
|
||||||
|
"unit": "int",
|
||||||
|
"label": "{} Layers".format(torch.cuda.get_device_name(i)),
|
||||||
|
"id": "{}_Layers".format(i),
|
||||||
|
"min": 0,
|
||||||
|
"max": layer_count,
|
||||||
|
"step": 1,
|
||||||
|
"check": {"sum": ["{}_Layers".format(i) for i in range(gpu_count)], "value": layer_count, 'check': "="},
|
||||||
|
"check_message": "The sum of assigned layers must equal {}".format(layer_count),
|
||||||
|
"default": [layer_count if i == 0 else 0],
|
||||||
|
"tooltip": "The number of layers to put on {}.".format(torch.cuda.get_device_name(i)),
|
||||||
|
"menu_path": "Layers",
|
||||||
|
"extra_classes": "",
|
||||||
|
"refresh_model_inputs": False
|
||||||
|
})
|
||||||
|
|
||||||
|
return requested_parameters
|
||||||
|
|
||||||
|
def set_input_parameters(self, parameters):
|
||||||
|
gpu_count = torch.cuda.device_count()
|
||||||
|
layers = []
|
||||||
|
for i in range(gpu_count):
|
||||||
|
if isinstance(parameters["{}_Layers".format(i)], str) and parameters["{}_Layers".format(i)].isnumeric():
|
||||||
|
layers.append(int(parameters["{}_Layers".format(i)]))
|
||||||
|
elif isinstance(parameters["{}_Layers".format(i)], str):
|
||||||
|
layers.append(None)
|
||||||
|
else:
|
||||||
|
layers.append(parameters["{}_Layers".format(i)])
|
||||||
|
|
||||||
|
self.layers = layers
|
||||||
|
for i, l in enumerate(layers):
|
||||||
|
if l > 0:
|
||||||
|
self.model_config.device_map.layers.extend([f"cuda:{i}"] * l)
|
||||||
|
self.model_config.device_map.lm_head = "cuda:0"
|
||||||
|
self.model_config.device_map.norm = "cuda:0"
|
||||||
|
|
||||||
|
self.model_name = parameters['custom_model_name'] if 'custom_model_name' in parameters else parameters['id']
|
||||||
|
self.path = parameters['path'] if 'path' in parameters else None
|
Reference in New Issue
Block a user