Implement arrmansa's low VRAM patch
This commit is contained in:
parent
f12e3576a8
commit
b1c13f832a
107
aiserver.py
107
aiserver.py
|
@ -13,12 +13,15 @@ import json
|
|||
import requests
|
||||
import html
|
||||
import argparse
|
||||
import sys
|
||||
import gc
|
||||
|
||||
# KoboldAI
|
||||
import fileops
|
||||
import gensettings
|
||||
from utils import debounce
|
||||
import utils
|
||||
import breakmodel
|
||||
|
||||
#==================================================================#
|
||||
# Variables & Storage
|
||||
|
@ -100,6 +103,8 @@ class vars:
|
|||
saveow = False # Whether or not overwrite confirm has been displayed
|
||||
genseqs = [] # Temporary storage for generated sequences
|
||||
useprompt = True # Whether to send the full prompt with every submit action
|
||||
breakmodel = False # For GPU users, whether to use both system RAM and VRAM to conserve VRAM while offering speedup compared to CPU-only
|
||||
bmsupported = False # Whether the breakmodel option is supported (GPT-Neo/GPT-J only, currently)
|
||||
acregex_ai = re.compile(r'\n* *>(.|\n)*') # Pattern for matching adventure actions from the AI so we can remove them
|
||||
acregex_ui = re.compile(r'^ *(>.*)$', re.MULTILINE) # Pattern for matching actions in the HTML-escaped story so we can apply colouring, etc (make sure to encase part to format in parentheses)
|
||||
actionmode = 1
|
||||
|
@ -160,6 +165,8 @@ parser.add_argument("--remote", action='store_true', help="Optimizes KoboldAI fo
|
|||
parser.add_argument("--model", help="Specify the Model Type to skip the Menu")
|
||||
parser.add_argument("--path", help="Specify the Path for local models (For model NeoCustom or GPT2Custom)")
|
||||
parser.add_argument("--cpu", action='store_true', help="By default unattended launches are on the GPU use this option to force CPU usage.")
|
||||
parser.add_argument("--breakmodel", action='store_true', help="For models that support GPU-CPU hybrid generation, use this feature instead of GPU or CPU generation")
|
||||
parser.add_argument("--breakmodel_layers", type=int, help="Specify the number of layers to commit to system RAM if --breakmodel is used")
|
||||
args = parser.parse_args()
|
||||
vars.model = args.model;
|
||||
|
||||
|
@ -184,6 +191,7 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
|
|||
import torch
|
||||
print("{0}Looking for GPU support...{1}".format(colors.PURPLE, colors.END), end="")
|
||||
vars.hascuda = torch.cuda.is_available()
|
||||
vars.bmsupported = vars.model in ("EleutherAI/gpt-neo-1.3B", "EleutherAI/gpt-neo-2.7B", "NeoCustom")
|
||||
if(vars.hascuda):
|
||||
print("{0}FOUND!{1}".format(colors.GREEN, colors.END))
|
||||
else:
|
||||
|
@ -193,10 +201,20 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
|
|||
if(vars.hascuda):
|
||||
genselected = True
|
||||
vars.usegpu = True
|
||||
vars.breakmodel = False
|
||||
if(args.cpu):
|
||||
vars.usegpu = False
|
||||
vars.breakmodel = False
|
||||
if(args.breakmodel):
|
||||
vars.usegpu = False
|
||||
vars.breakmodel = True
|
||||
elif(vars.hascuda):
|
||||
print("{0}Use GPU or CPU for generation?: (Default GPU){1}\n".format(colors.CYAN, colors.END))
|
||||
if(vars.bmsupported):
|
||||
print(colors.YELLOW + "You're using a model that supports GPU-CPU hybrid generation!\nCurrently only GPT-Neo models and GPT-J-6B support this feature.")
|
||||
print("{0}Use GPU or CPU for generation?: (Default GPU){1}".format(colors.CYAN, colors.END))
|
||||
if(vars.bmsupported):
|
||||
print(f" 1 - GPU\n 2 - CPU\n 3 - Both (slower than GPU-only but uses less VRAM)\n")
|
||||
else:
|
||||
print(" 1 - GPU\n 2 - CPU\n")
|
||||
genselected = False
|
||||
|
||||
|
@ -204,12 +222,19 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
|
|||
while(genselected == False):
|
||||
genselect = input("Mode> ")
|
||||
if(genselect == ""):
|
||||
vars.breakmodel = False
|
||||
vars.usegpu = True
|
||||
genselected = True
|
||||
elif(genselect.isnumeric() and int(genselect) == 1):
|
||||
vars.breakmodel = False
|
||||
vars.usegpu = True
|
||||
genselected = True
|
||||
elif(genselect.isnumeric() and int(genselect) == 2):
|
||||
vars.breakmodel = False
|
||||
vars.usegpu = False
|
||||
genselected = True
|
||||
elif(vars.bmsupported and genselect.isnumeric() and int(genselect) == 3):
|
||||
vars.breakmodel = True
|
||||
vars.usegpu = False
|
||||
genselected = True
|
||||
else:
|
||||
|
@ -343,15 +368,45 @@ print("{0}OK!{1}".format(colors.GREEN, colors.END))
|
|||
if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
|
||||
if(not vars.noai):
|
||||
print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END))
|
||||
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel, GPTNeoForCausalLM
|
||||
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel, GPTNeoForCausalLM, GPTNeoModel, AutoModel
|
||||
|
||||
# If custom GPT Neo model was chosen
|
||||
if(vars.model == "NeoCustom"):
|
||||
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth)
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth)
|
||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||
if(vars.hascuda and vars.usegpu):
|
||||
if(vars.hascuda):
|
||||
if(vars.usegpu):
|
||||
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=0)
|
||||
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
|
||||
n_layers = model.config.num_layers
|
||||
breakmodel.total_blocks = n_layers
|
||||
model.half().to('cpu')
|
||||
gc.collect()
|
||||
model.lm_head.to(breakmodel.gpu_device)
|
||||
model.transformer.wte.to(breakmodel.gpu_device)
|
||||
model.transformer.ln_f.to(breakmodel.gpu_device)
|
||||
gc.collect()
|
||||
if(args.breakmodel):
|
||||
breakmodel.ram_blocks = max(0, min(n_layers, args.breakmodel))
|
||||
else:
|
||||
print(colors.CYAN + "\nHow many layers would you like to put into system RAM?")
|
||||
print("The more of them you put into system RAM, the slower it will run,")
|
||||
print("but it will require less VRAM")
|
||||
print("(roughly proportional to number of layers).")
|
||||
print(f"This model has{colors.YELLOW} {n_layers} {colors.CYAN}layers.{colors.END}\n")
|
||||
while(True):
|
||||
layerselect = input("# of layers> ")
|
||||
if(layerselect.isnumeric() and 0 <= int(layerselect) <= n_layers):
|
||||
breakmodel.ram_blocks = int(layerselect)
|
||||
break
|
||||
else:
|
||||
print(f"{colors.RED}Please enter an integer between 0 and {n_layers}.{colors.END}")
|
||||
print(f"{colors.PURPLE}Will commit{colors.YELLOW} {breakmodel.ram_blocks} {colors.PURPLE}of{colors.YELLOW} {n_layers} {colors.PURPLE}layers to system RAM.{colors.END}")
|
||||
GPTNeoModel.forward = breakmodel.new_forward
|
||||
generator = model.generate
|
||||
else:
|
||||
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
||||
else:
|
||||
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
||||
# If custom GPT2 model was chosen
|
||||
|
@ -367,8 +422,39 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
|
|||
else:
|
||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(vars.model)
|
||||
if(vars.hascuda and vars.usegpu):
|
||||
if(vars.hascuda):
|
||||
if(vars.usegpu):
|
||||
generator = pipeline('text-generation', model=vars.model, device=0)
|
||||
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
|
||||
model = AutoModel.from_pretrained(vars.model)
|
||||
n_layers = model.config.num_layers
|
||||
breakmodel.total_blocks = n_layers
|
||||
model.half().to('cpu')
|
||||
gc.collect()
|
||||
model.lm_head.to(breakmodel.gpu_device)
|
||||
model.transformer.wte.to(breakmodel.gpu_device)
|
||||
model.transformer.ln_f.to(breakmodel.gpu_device)
|
||||
gc.collect()
|
||||
if(args.breakmodel):
|
||||
breakmodel.ram_blocks = max(0, min(n_layers, args.breakmodel))
|
||||
else:
|
||||
print(colors.CYAN + "\nHow many layers would you like to put into system RAM?")
|
||||
print("The more of them you put into system RAM, the slower it will run,")
|
||||
print("but it will require less VRAM")
|
||||
print("(roughly proportional to number of layers).")
|
||||
print(f"This model has{colors.YELLOW} {n_layers} {colors.CYAN}layers.{colors.END}\n")
|
||||
while(True):
|
||||
layerselect = input("# of layers> ")
|
||||
if(layerselect.isnumeric() and 0 <= int(layerselect) <= n_layers):
|
||||
breakmodel.ram_blocks = int(layerselect)
|
||||
break
|
||||
else:
|
||||
print(f"{colors.RED}Please enter an integer between 0 and {n_layers}.{colors.END}")
|
||||
print(f"{colors.PURPLE}Will commit{colors.YELLOW} {breakmodel.ram_blocks} {colors.PURPLE}of{colors.YELLOW} {n_layers} {colors.PURPLE}layers to system RAM.{colors.END}")
|
||||
GPTNeoModel.forward = breakmodel.new_forward
|
||||
generator = model.generate
|
||||
else:
|
||||
generator = pipeline('text-generation', model=vars.model)
|
||||
else:
|
||||
generator = pipeline('text-generation', model=vars.model)
|
||||
|
||||
|
@ -984,7 +1070,8 @@ def generate(txt, min, max):
|
|||
vars.lastctx = txt
|
||||
|
||||
# Clear CUDA cache if using GPU
|
||||
if(vars.hascuda and vars.usegpu):
|
||||
if(vars.hascuda and (vars.usegpu or vars.breakmodel)):
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Submit input text to generator
|
||||
|
@ -993,8 +1080,16 @@ def generate(txt, min, max):
|
|||
top_k = vars.top_k if vars.top_k > 0 else None
|
||||
tfs = vars.tfs if vars.tfs > 0.0 else None
|
||||
|
||||
# generator() only accepts a torch tensor of tokens (long datatype) as
|
||||
# its first argument if we're using breakmodel, otherwise a string
|
||||
# is fine
|
||||
if(vars.hascuda and vars.breakmodel):
|
||||
gen_in = tokenizer.encode(txt, return_tensors="pt", truncation=True).long().to(breakmodel.gpu_device)
|
||||
else:
|
||||
gen_in = txt
|
||||
|
||||
genout = generator(
|
||||
txt,
|
||||
gen_in,
|
||||
do_sample=True,
|
||||
min_length=min,
|
||||
max_length=max,
|
||||
|
|
|
@ -0,0 +1,487 @@
|
|||
'''
|
||||
This is a MODIFIED version of arrmansa's low VRAM patch.
|
||||
https://github.com/arrmansa/Basic-UI-for-GPT-J-6B-with-low-vram/blob/main/GPT-J-6B-Low-Vram-UI.ipynb
|
||||
Copyright 2021 arrmansa
|
||||
Copyright 2021 finetuneanon
|
||||
Copyright 2018 The Hugging Face team
|
||||
Released under the Apache License 2.0
|
||||
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
'''
|
||||
|
||||
|
||||
import torch
|
||||
import copy
|
||||
import gc
|
||||
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class MaxSharedRamBlocksException(Exception):
|
||||
def __init__(self, i: int):
|
||||
self.corrected_max_shared_ram_blocks = i
|
||||
super().__init__('max_shared_ram_blocks is set too high, please set it to '+str(i))
|
||||
|
||||
|
||||
breakmodel = True
|
||||
gpu_device = 'cuda'
|
||||
total_blocks = 24
|
||||
ram_blocks = 7
|
||||
max_shared_ram_blocks = None
|
||||
|
||||
|
||||
def new_forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
embs=None,
|
||||
):
|
||||
global max_shared_ram_blocks
|
||||
|
||||
if breakmodel:
|
||||
if max_shared_ram_blocks is None:
|
||||
max_shared_ram_blocks = total_blocks
|
||||
|
||||
if not hasattr(self, 'extrastorage'):
|
||||
setattr(self,"extrastorage",{})
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
for i in range(ram_blocks,len(self.h)):
|
||||
self.h[i].to(gpu_device)
|
||||
|
||||
for i in range(ram_blocks):
|
||||
self.h[i].to("cpu")
|
||||
self.extrastorage[i] = copy.deepcopy(self.h[i])
|
||||
smalltensor = torch.tensor(0).to(gpu_device)
|
||||
for param1 in self.h[i].parameters():
|
||||
param1.data = smalltensor
|
||||
self.h[i].to(gpu_device)
|
||||
|
||||
for i in range(len(self.h)):
|
||||
for param in self.h[i].parameters():
|
||||
param.requires_grad = False
|
||||
param.data = param.data.detach()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
for i in range(ram_blocks):
|
||||
for param in self.extrastorage[i].parameters():
|
||||
param.requires_grad = False
|
||||
if i < max_shared_ram_blocks:
|
||||
try:
|
||||
param.data = param.data.detach().pin_memory()
|
||||
except:
|
||||
raise MaxSharedRamBlocksException(i)
|
||||
else:
|
||||
param.data = param.data.detach()
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
for param1,param2 in zip(self.h[0].parameters(),self.extrastorage[0].parameters()):
|
||||
param1.data = param2.data.to(gpu_device, non_blocking=False).detach()
|
||||
|
||||
for param1,param2 in zip(self.h[ram_blocks-1].parameters(),self.extrastorage[ram_blocks-1].parameters()):
|
||||
param1.data = param2.data.to(gpu_device, non_blocking=False).detach()
|
||||
#END MODEL BREAK EDITS
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
batch_size = input_ids.shape[0]
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
batch_size = inputs_embeds.shape[0]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
|
||||
if token_type_ids is not None:
|
||||
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
||||
if position_ids is not None:
|
||||
position_ids = position_ids.view(-1, input_shape[-1])
|
||||
|
||||
if past_key_values is None:
|
||||
past_length = 0
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
else:
|
||||
past_length = past_key_values[0][0].size(-2)
|
||||
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
if position_ids is None:
|
||||
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
||||
|
||||
# Attention mask.
|
||||
if attention_mask is not None:
|
||||
assert batch_size > 0, "batch_size has to be defined and > 0"
|
||||
global_attention_mask = attention_mask.view(batch_size, -1)
|
||||
# We create a 3D attention mask from a 2D tensor mask.
|
||||
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
||||
# this attention mask is more simple than the triangular masking of causal attention
|
||||
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
||||
global_attention_mask = global_attention_mask[:, None, None, :]
|
||||
|
||||
# Since global_attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
global_attention_mask = global_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||
global_attention_mask = (1.0 - global_attention_mask) * -10000.0
|
||||
else:
|
||||
global_attention_mask = None
|
||||
|
||||
# Local causal attention mask
|
||||
batch_size, seq_length = input_shape
|
||||
full_seq_length = seq_length + past_length
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x num_heads x N x N
|
||||
# head_mask has shape n_layer x batch x num_heads x N x N
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.wte(input_ids)
|
||||
|
||||
if embs is not None and not (use_cache is not None and use_cache and past_key_values is not None and len(past_key_values) > 0 and past_key_values[0] is not None):
|
||||
offset = 0
|
||||
for pos, emb in embs:
|
||||
pos += offset
|
||||
if len(emb.shape) == 2:
|
||||
emb = emb.repeat(input_shape[0], 1, 1)
|
||||
inputs_embeds[:, pos:pos+emb.shape[1]] = emb
|
||||
offset += emb.shape[1]
|
||||
|
||||
if self.rotary:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
position_embeds = self.wpe(position_ids)
|
||||
hidden_states = inputs_embeds + position_embeds
|
||||
|
||||
if token_type_ids is not None:
|
||||
token_type_embeds = self.wte(token_type_ids)
|
||||
hidden_states = hidden_states + token_type_embeds
|
||||
|
||||
hidden_states = self.drop(hidden_states)
|
||||
|
||||
output_shape = input_shape + (hidden_states.size(-1),)
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
|
||||
|
||||
if breakmodel:
|
||||
copystream = torch.cuda.Stream(device=0,priority = -1)
|
||||
|
||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||||
|
||||
if breakmodel:
|
||||
if i in range(ram_blocks):
|
||||
index1 = (i+1)%ram_blocks
|
||||
for param1,param2 in zip(self.h[index1].parameters(),self.h[(i-1)%ram_blocks].parameters()):
|
||||
param1.data = param2.data
|
||||
for param1,param2 in zip(self.h[index1].parameters(),self.extrastorage[index1].parameters()):
|
||||
with torch.cuda.stream(copystream):
|
||||
torch.cuda.comm.broadcast(param2.data,out = [param1.data])
|
||||
|
||||
|
||||
attn_type = self.config.attention_layers[i]
|
||||
attn_mask = global_attention_mask
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states.cpu(),)
|
||||
|
||||
if getattr(self.config, "gradient_checkpointing", False) and self.training:
|
||||
|
||||
if use_cache:
|
||||
logger.warning(
|
||||
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
|
||||
"`use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, use_cache, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
None,
|
||||
attn_mask,
|
||||
head_mask[i],
|
||||
)
|
||||
else:
|
||||
outputs = block(
|
||||
hidden_states,
|
||||
layer_past=layer_past,
|
||||
attention_mask=attn_mask,
|
||||
head_mask=head_mask[i],
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||
|
||||
|
||||
if breakmodel:
|
||||
if i in range(ram_blocks):
|
||||
torch.cuda.synchronize()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if breakmodel:
|
||||
del copystream
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
||||
hidden_states = hidden_states.view(*output_shape)
|
||||
# Add last hidden state
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
Loading…
Reference in New Issue