Implement arrmansa's low VRAM patch

This commit is contained in:
Gnome Ann 2021-08-20 10:25:03 -04:00
parent f12e3576a8
commit b1c13f832a
2 changed files with 610 additions and 28 deletions

View File

@ -13,12 +13,15 @@ import json
import requests
import html
import argparse
import sys
import gc
# KoboldAI
import fileops
import gensettings
from utils import debounce
import utils
import breakmodel
#==================================================================#
# Variables & Storage
@ -100,6 +103,8 @@ class vars:
saveow = False # Whether or not overwrite confirm has been displayed
genseqs = [] # Temporary storage for generated sequences
useprompt = True # Whether to send the full prompt with every submit action
breakmodel = False # For GPU users, whether to use both system RAM and VRAM to conserve VRAM while offering speedup compared to CPU-only
bmsupported = False # Whether the breakmodel option is supported (GPT-Neo/GPT-J only, currently)
acregex_ai = re.compile(r'\n* *>(.|\n)*') # Pattern for matching adventure actions from the AI so we can remove them
acregex_ui = re.compile(r'^ *(>.*)$', re.MULTILINE) # Pattern for matching actions in the HTML-escaped story so we can apply colouring, etc (make sure to encase part to format in parentheses)
actionmode = 1
@ -160,6 +165,8 @@ parser.add_argument("--remote", action='store_true', help="Optimizes KoboldAI fo
parser.add_argument("--model", help="Specify the Model Type to skip the Menu")
parser.add_argument("--path", help="Specify the Path for local models (For model NeoCustom or GPT2Custom)")
parser.add_argument("--cpu", action='store_true', help="By default unattended launches are on the GPU use this option to force CPU usage.")
parser.add_argument("--breakmodel", action='store_true', help="For models that support GPU-CPU hybrid generation, use this feature instead of GPU or CPU generation")
parser.add_argument("--breakmodel_layers", type=int, help="Specify the number of layers to commit to system RAM if --breakmodel is used")
args = parser.parse_args()
vars.model = args.model;
@ -184,6 +191,7 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
import torch
print("{0}Looking for GPU support...{1}".format(colors.PURPLE, colors.END), end="")
vars.hascuda = torch.cuda.is_available()
vars.bmsupported = vars.model in ("EleutherAI/gpt-neo-1.3B", "EleutherAI/gpt-neo-2.7B", "NeoCustom")
if(vars.hascuda):
print("{0}FOUND!{1}".format(colors.GREEN, colors.END))
else:
@ -193,10 +201,20 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
if(vars.hascuda):
genselected = True
vars.usegpu = True
vars.breakmodel = False
if(args.cpu):
vars.usegpu = False
vars.breakmodel = False
if(args.breakmodel):
vars.usegpu = False
vars.breakmodel = True
elif(vars.hascuda):
print("{0}Use GPU or CPU for generation?: (Default GPU){1}\n".format(colors.CYAN, colors.END))
if(vars.bmsupported):
print(colors.YELLOW + "You're using a model that supports GPU-CPU hybrid generation!\nCurrently only GPT-Neo models and GPT-J-6B support this feature.")
print("{0}Use GPU or CPU for generation?: (Default GPU){1}".format(colors.CYAN, colors.END))
if(vars.bmsupported):
print(f" 1 - GPU\n 2 - CPU\n 3 - Both (slower than GPU-only but uses less VRAM)\n")
else:
print(" 1 - GPU\n 2 - CPU\n")
genselected = False
@ -204,12 +222,19 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
while(genselected == False):
genselect = input("Mode> ")
if(genselect == ""):
vars.breakmodel = False
vars.usegpu = True
genselected = True
elif(genselect.isnumeric() and int(genselect) == 1):
vars.breakmodel = False
vars.usegpu = True
genselected = True
elif(genselect.isnumeric() and int(genselect) == 2):
vars.breakmodel = False
vars.usegpu = False
genselected = True
elif(vars.bmsupported and genselect.isnumeric() and int(genselect) == 3):
vars.breakmodel = True
vars.usegpu = False
genselected = True
else:
@ -343,15 +368,45 @@ print("{0}OK!{1}".format(colors.GREEN, colors.END))
if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
if(not vars.noai):
print("{0}Initializing transformers, please wait...{1}".format(colors.PURPLE, colors.END))
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel, GPTNeoForCausalLM
from transformers import pipeline, GPT2Tokenizer, GPT2LMHeadModel, GPTNeoForCausalLM, GPTNeoModel, AutoModel
# If custom GPT Neo model was chosen
if(vars.model == "NeoCustom"):
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth)
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth)
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
if(vars.hascuda and vars.usegpu):
if(vars.hascuda):
if(vars.usegpu):
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=0)
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
n_layers = model.config.num_layers
breakmodel.total_blocks = n_layers
model.half().to('cpu')
gc.collect()
model.lm_head.to(breakmodel.gpu_device)
model.transformer.wte.to(breakmodel.gpu_device)
model.transformer.ln_f.to(breakmodel.gpu_device)
gc.collect()
if(args.breakmodel):
breakmodel.ram_blocks = max(0, min(n_layers, args.breakmodel))
else:
print(colors.CYAN + "\nHow many layers would you like to put into system RAM?")
print("The more of them you put into system RAM, the slower it will run,")
print("but it will require less VRAM")
print("(roughly proportional to number of layers).")
print(f"This model has{colors.YELLOW} {n_layers} {colors.CYAN}layers.{colors.END}\n")
while(True):
layerselect = input("# of layers> ")
if(layerselect.isnumeric() and 0 <= int(layerselect) <= n_layers):
breakmodel.ram_blocks = int(layerselect)
break
else:
print(f"{colors.RED}Please enter an integer between 0 and {n_layers}.{colors.END}")
print(f"{colors.PURPLE}Will commit{colors.YELLOW} {breakmodel.ram_blocks} {colors.PURPLE}of{colors.YELLOW} {n_layers} {colors.PURPLE}layers to system RAM.{colors.END}")
GPTNeoModel.forward = breakmodel.new_forward
generator = model.generate
else:
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
else:
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
# If custom GPT2 model was chosen
@ -367,8 +422,39 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly"]):
else:
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
tokenizer = GPT2Tokenizer.from_pretrained(vars.model)
if(vars.hascuda and vars.usegpu):
if(vars.hascuda):
if(vars.usegpu):
generator = pipeline('text-generation', model=vars.model, device=0)
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
model = AutoModel.from_pretrained(vars.model)
n_layers = model.config.num_layers
breakmodel.total_blocks = n_layers
model.half().to('cpu')
gc.collect()
model.lm_head.to(breakmodel.gpu_device)
model.transformer.wte.to(breakmodel.gpu_device)
model.transformer.ln_f.to(breakmodel.gpu_device)
gc.collect()
if(args.breakmodel):
breakmodel.ram_blocks = max(0, min(n_layers, args.breakmodel))
else:
print(colors.CYAN + "\nHow many layers would you like to put into system RAM?")
print("The more of them you put into system RAM, the slower it will run,")
print("but it will require less VRAM")
print("(roughly proportional to number of layers).")
print(f"This model has{colors.YELLOW} {n_layers} {colors.CYAN}layers.{colors.END}\n")
while(True):
layerselect = input("# of layers> ")
if(layerselect.isnumeric() and 0 <= int(layerselect) <= n_layers):
breakmodel.ram_blocks = int(layerselect)
break
else:
print(f"{colors.RED}Please enter an integer between 0 and {n_layers}.{colors.END}")
print(f"{colors.PURPLE}Will commit{colors.YELLOW} {breakmodel.ram_blocks} {colors.PURPLE}of{colors.YELLOW} {n_layers} {colors.PURPLE}layers to system RAM.{colors.END}")
GPTNeoModel.forward = breakmodel.new_forward
generator = model.generate
else:
generator = pipeline('text-generation', model=vars.model)
else:
generator = pipeline('text-generation', model=vars.model)
@ -984,7 +1070,8 @@ def generate(txt, min, max):
vars.lastctx = txt
# Clear CUDA cache if using GPU
if(vars.hascuda and vars.usegpu):
if(vars.hascuda and (vars.usegpu or vars.breakmodel)):
gc.collect()
torch.cuda.empty_cache()
# Submit input text to generator
@ -993,8 +1080,16 @@ def generate(txt, min, max):
top_k = vars.top_k if vars.top_k > 0 else None
tfs = vars.tfs if vars.tfs > 0.0 else None
# generator() only accepts a torch tensor of tokens (long datatype) as
# its first argument if we're using breakmodel, otherwise a string
# is fine
if(vars.hascuda and vars.breakmodel):
gen_in = tokenizer.encode(txt, return_tensors="pt", truncation=True).long().to(breakmodel.gpu_device)
else:
gen_in = txt
genout = generator(
txt,
gen_in,
do_sample=True,
min_length=min,
max_length=max,

487
breakmodel.py Normal file
View File

@ -0,0 +1,487 @@
'''
This is a MODIFIED version of arrmansa's low VRAM patch.
https://github.com/arrmansa/Basic-UI-for-GPT-J-6B-with-low-vram/blob/main/GPT-J-6B-Low-Vram-UI.ipynb
Copyright 2021 arrmansa
Copyright 2021 finetuneanon
Copyright 2018 The Hugging Face team
Released under the Apache License 2.0
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
import torch
import copy
import gc
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.utils import logging
logger = logging.get_logger(__name__)
class MaxSharedRamBlocksException(Exception):
def __init__(self, i: int):
self.corrected_max_shared_ram_blocks = i
super().__init__('max_shared_ram_blocks is set too high, please set it to '+str(i))
breakmodel = True
gpu_device = 'cuda'
total_blocks = 24
ram_blocks = 7
max_shared_ram_blocks = None
def new_forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
embs=None,
):
global max_shared_ram_blocks
if breakmodel:
if max_shared_ram_blocks is None:
max_shared_ram_blocks = total_blocks
if not hasattr(self, 'extrastorage'):
setattr(self,"extrastorage",{})
torch.cuda.empty_cache()
for i in range(ram_blocks,len(self.h)):
self.h[i].to(gpu_device)
for i in range(ram_blocks):
self.h[i].to("cpu")
self.extrastorage[i] = copy.deepcopy(self.h[i])
smalltensor = torch.tensor(0).to(gpu_device)
for param1 in self.h[i].parameters():
param1.data = smalltensor
self.h[i].to(gpu_device)
for i in range(len(self.h)):
for param in self.h[i].parameters():
param.requires_grad = False
param.data = param.data.detach()
gc.collect()
torch.cuda.empty_cache()
for i in range(ram_blocks):
for param in self.extrastorage[i].parameters():
param.requires_grad = False
if i < max_shared_ram_blocks:
try:
param.data = param.data.detach().pin_memory()
except:
raise MaxSharedRamBlocksException(i)
else:
param.data = param.data.detach()
gc.collect()
torch.cuda.empty_cache()
for param1,param2 in zip(self.h[0].parameters(),self.extrastorage[0].parameters()):
param1.data = param2.data.to(gpu_device, non_blocking=False).detach()
for param1,param2 in zip(self.h[ram_blocks-1].parameters(),self.extrastorage[ram_blocks-1].parameters()):
param1.data = param2.data.to(gpu_device, non_blocking=False).detach()
#END MODEL BREAK EDITS
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# Attention mask.
if attention_mask is not None:
assert batch_size > 0, "batch_size has to be defined and > 0"
global_attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
global_attention_mask = global_attention_mask[:, None, None, :]
# Since global_attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
global_attention_mask = global_attention_mask.to(dtype=self.dtype) # fp16 compatibility
global_attention_mask = (1.0 - global_attention_mask) * -10000.0
else:
global_attention_mask = None
# Local causal attention mask
batch_size, seq_length = input_shape
full_seq_length = seq_length + past_length
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x num_heads x N x N
# head_mask has shape n_layer x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
if embs is not None and not (use_cache is not None and use_cache and past_key_values is not None and len(past_key_values) > 0 and past_key_values[0] is not None):
offset = 0
for pos, emb in embs:
pos += offset
if len(emb.shape) == 2:
emb = emb.repeat(input_shape[0], 1, 1)
inputs_embeds[:, pos:pos+emb.shape[1]] = emb
offset += emb.shape[1]
if self.rotary:
hidden_states = inputs_embeds
else:
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
if breakmodel:
copystream = torch.cuda.Stream(device=0,priority = -1)
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if breakmodel:
if i in range(ram_blocks):
index1 = (i+1)%ram_blocks
for param1,param2 in zip(self.h[index1].parameters(),self.h[(i-1)%ram_blocks].parameters()):
param1.data = param2.data
for param1,param2 in zip(self.h[index1].parameters(),self.extrastorage[index1].parameters()):
with torch.cuda.stream(copystream):
torch.cuda.comm.broadcast(param2.data,out = [param1.data])
attn_type = self.config.attention_layers[i]
attn_mask = global_attention_mask
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states.cpu(),)
if getattr(self.config, "gradient_checkpointing", False) and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
"`use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attn_mask,
head_mask[i],
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attn_mask,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if breakmodel:
if i in range(ram_blocks):
torch.cuda.synchronize()
torch.cuda.empty_cache()
if breakmodel:
del copystream
torch.cuda.empty_cache()
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(*output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)