diff --git a/aiserver.py b/aiserver.py index 68190b37..c5b3a425 100644 --- a/aiserver.py +++ b/aiserver.py @@ -1792,6 +1792,7 @@ def get_layer_count(model, directory=""): model_config = AutoConfig.from_pretrained(koboldai_vars.custmodpth.replace('/', '_'), revision=args.revision, cache_dir="cache") else: model_config = AutoConfig.from_pretrained(model, revision=args.revision, cache_dir="cache") + model_config = AutoConfig.from_pretrained(model, revision=args.revision, cache_dir="cache") try: if ((utils.HAS_ACCELERATE and model_config.model_type != 'gpt2') or model_config.model_type in ("gpt_neo", "gptj", "xglm", "opt")) and not koboldai_vars.nobreakmodel: return utils.num_layers(model_config) @@ -3129,6 +3130,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache") except Exception as e: tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") try: model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=args.revision, cache_dir="cache", **lowmem) except Exception as e: @@ -3146,6 +3148,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal tokenizer = GPT2Tokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache") except Exception as e: tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") try: model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=args.revision, cache_dir="cache", **lowmem) except Exception as e: @@ -3176,6 +3179,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal tokenizer = GPT2Tokenizer.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache") except Exception as e: tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") try: model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=args.revision, cache_dir="cache", **lowmem) except Exception as e: @@ -3260,6 +3264,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal else: from transformers import GPT2Tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") else: from transformers import PreTrainedModel from transformers import modeling_utils @@ -3673,6 +3678,7 @@ def lua_decode(tokens): from transformers import GPT2Tokenizer global tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") return utils.decodenewlines(tokenizer.decode(tokens)) #==================================================================# @@ -3685,6 +3691,7 @@ def lua_encode(string): from transformers import GPT2Tokenizer global tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") return tokenizer.encode(utils.encodenewlines(string), max_length=int(4e9), truncation=True) #==================================================================# @@ -4843,18 +4850,24 @@ def actionsubmit(data, actionmode=0, force_submit=False, force_prompt_gen=False, if(os.path.isdir(tokenizer_id)): try: tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=args.revision, cache_dir="cache") + tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=args.revision, cache_dir="cache") except: tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=args.revision, cache_dir="cache", use_fast=False) + tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=args.revision, cache_dir="cache", use_fast=False) elif(os.path.isdir("models/{}".format(tokenizer_id.replace('/', '_')))): try: tokenizer = AutoTokenizer.from_pretrained("models/{}".format(tokenizer_id.replace('/', '_')), revision=args.revision, cache_dir="cache") + tokenizer = AutoTokenizer.from_pretrained("models/{}".format(tokenizer_id.replace('/', '_')), revision=args.revision, cache_dir="cache") except: tokenizer = AutoTokenizer.from_pretrained("models/{}".format(tokenizer_id.replace('/', '_')), revision=args.revision, cache_dir="cache", use_fast=False) + tokenizer = AutoTokenizer.from_pretrained("models/{}".format(tokenizer_id.replace('/', '_')), revision=args.revision, cache_dir="cache", use_fast=False) else: try: tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=args.revision, cache_dir="cache") + tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=args.revision, cache_dir="cache") except: tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=args.revision, cache_dir="cache", use_fast=False) + tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=args.revision, cache_dir="cache", use_fast=False) except: logger.warning(f"Unknown tokenizer {repr(tokenizer_id)}") koboldai_vars.api_tokenizer_id = tokenizer_id @@ -5230,6 +5243,7 @@ def calcsubmitbudget(actionlen, winfo, mem, anotetxt, actions, submission=None, from transformers import GPT2Tokenizer global tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") + tokenizer = GPT2Tokenizer.from_pretrained("gpt2", revision=args.revision, cache_dir="cache") lnheader = len(tokenizer._koboldai_header) diff --git a/colab/TPU.ipynb b/colab/TPU.ipynb index 60664780..9e2375e2 100644 --- a/colab/TPU.ipynb +++ b/colab/TPU.ipynb @@ -66,7 +66,7 @@ "#@title <-- Select your model below and then click this to start KoboldAI\n", "#@markdown You can find a description of the models below along with instructions on how to start KoboldAI.\n", "\n", - "Model = \"Nerys 13B V2\" #@param [\"Nerys 13B V2\", \"Erebus 13B\", \"Janeway 13B\", \"Shinen 13B\", \"Skein 20B\", \"Erebus 20B\", \"Skein 6B\", \"Janeway 6B\", \"Adventure 6B\", \"Shinen 6B\", \"Pygmalion 6B\", \"Pygmalion 6B Dev\", \"Lit V2 6B\", \"Lit 6B\", \"NeoX 20B\", \"OPT 13B\", \"Fairseq Dense 13B\", \"GPT-J-6B\"] {allow-input: true}\n", + "Model = \"Nerys 13B V2\" #@param [\"Nerys 13B V2\", \"Erebus 13B\", \"Janeway 13B\", \"Shinen 13B\", \"Skein 20B\", \"Erebus 20B\", \"Skein 6B\", \"Janeway 6B\", \"Adventure 6B\", \"Shinen 6B\", \"Pygmalion 6B\", \"Lit V2 6B\", \"Lit 6B\", \"NeoX 20B\", \"OPT 13B\", \"Fairseq Dense 13B\", \"GPT-J-6B\"] {allow-input: true}\n", "Version = \"Official\" #@param [\"Official\", \"United\"] {allow-input: true}\n", "Provider = \"Cloudflare\" #@param [\"Localtunnel\", \"Cloudflare\"]\n", "use_google_drive = True #@param {type:\"boolean\"}\n", diff --git a/utils.py b/utils.py index aa37028e..e713cc45 100644 --- a/utils.py +++ b/utils.py @@ -286,7 +286,7 @@ def _transformers22_aria2_hook(pretrained_model_name_or_path: str, force_downloa if token is None: raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.") _cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE - _revision = revision if revision is not None else huggingface_hub.constants.DEFAULT_REVISION + _revision = args.revision if args.revision is not None else huggingface_hub.constants.DEFAULT_REVISION sharded = False headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)} if use_auth_token: @@ -306,7 +306,7 @@ def _transformers22_aria2_hook(pretrained_model_name_or_path: str, force_downloa filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME except AttributeError: return - url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=revision) + url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=_revision) if is_cached(filename) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers): break if sharded: @@ -320,7 +320,7 @@ def _transformers22_aria2_hook(pretrained_model_name_or_path: str, force_downloa with open(map_filename) as f: map_data = json.load(f) filenames = set(map_data["weight_map"].values()) - urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=revision) for n in filenames] + urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=_revision) for n in filenames] if not force_download: urls = [u for u, n in zip(urls, filenames) if not is_cached(n)] if not urls: @@ -485,6 +485,7 @@ def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_d import transformers import transformers.modeling_utils from huggingface_hub import HfFolder + _revision = args.revision if args.revision is not None else huggingface_hub.constants.DEFAULT_REVISION if shutil.which("aria2c") is None: # Don't do anything if aria2 is not installed return if local_files_only: # If local_files_only is true, we obviously don't need to download anything @@ -519,7 +520,7 @@ def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_d filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME except AttributeError: return - url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=revision) + url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=_revision) if is_cached(url) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers): break if sharded: @@ -533,7 +534,7 @@ def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_d with open(map_filename) as f: map_data = json.load(f) filenames = set(map_data["weight_map"].values()) - urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=revision) for n in filenames] + urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=_revision) for n in filenames] if not force_download: urls = [u for u in urls if not is_cached(u)] if not urls: @@ -580,7 +581,8 @@ def get_num_shards(filename): def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs): import transformers.modeling_utils import torch - shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision) + _revision = args.revision if args.revision is not None else huggingface_hub.constants.DEFAULT_REVISION + shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=_revision) return list(itertools.chain(*(torch.load(p, map_location="cpu").keys() for p in shard_paths))) #==================================================================#