Load model directly in fp16 if using GPU or breakmodel
This commit is contained in:
parent
95aff61781
commit
a93a76eb01
29
aiserver.py
29
aiserver.py
|
@ -15,6 +15,7 @@ import json
|
||||||
import collections
|
import collections
|
||||||
import zipfile
|
import zipfile
|
||||||
import packaging
|
import packaging
|
||||||
|
import contextlib
|
||||||
from typing import Any, Union, Dict, Set, List
|
from typing import Any, Union, Dict, Set, List
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
|
@ -709,15 +710,26 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme
|
||||||
print(f"\nWARNING: Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.", file=sys.stderr)
|
print(f"\nWARNING: Please upgrade to transformers 4.11.0 for lower RAM usage. You have transformers {transformers_version}.", file=sys.stderr)
|
||||||
return {}
|
return {}
|
||||||
return {"low_cpu_mem_usage": True}
|
return {"low_cpu_mem_usage": True}
|
||||||
|
|
||||||
|
@contextlib.contextmanager
|
||||||
|
def maybe_use_float16(always_use=False):
|
||||||
|
if(always_use or (vars.hascuda and (vars.usegpu or vars.breakmodel))):
|
||||||
|
original_dtype = torch.get_default_dtype()
|
||||||
|
torch.set_default_dtype(torch.float16)
|
||||||
|
yield True
|
||||||
|
torch.set_default_dtype(original_dtype)
|
||||||
|
else:
|
||||||
|
yield False
|
||||||
|
|
||||||
# If custom GPT Neo model was chosen
|
# If custom GPT Neo model was chosen
|
||||||
if(vars.model == "NeoCustom"):
|
if(vars.model == "NeoCustom"):
|
||||||
model_config = open(vars.custmodpth + "/config.json", "r")
|
model_config = open(vars.custmodpth + "/config.json", "r")
|
||||||
js = json.load(model_config)
|
js = json.load(model_config)
|
||||||
if("model_type" in js):
|
with(maybe_use_float16()):
|
||||||
model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
if("model_type" in js):
|
||||||
else:
|
model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||||
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
else:
|
||||||
|
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||||
vars.modeldim = get_hidden_size_from_model(model)
|
vars.modeldim = get_hidden_size_from_model(model)
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/")
|
||||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||||
|
@ -735,7 +747,8 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme
|
||||||
elif(vars.model == "GPT2Custom"):
|
elif(vars.model == "GPT2Custom"):
|
||||||
model_config = open(vars.custmodpth + "/config.json", "r")
|
model_config = open(vars.custmodpth + "/config.json", "r")
|
||||||
js = json.load(model_config)
|
js = json.load(model_config)
|
||||||
model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
with(maybe_use_float16()):
|
||||||
|
model = GPT2LMHeadModel.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
tokenizer = GPT2Tokenizer.from_pretrained(vars.custmodpth, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||||
vars.modeldim = get_hidden_size_from_model(model)
|
vars.modeldim = get_hidden_size_from_model(model)
|
||||||
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
# Is CUDA available? If so, use GPU, otherwise fall back to CPU
|
||||||
|
@ -750,12 +763,14 @@ if(not vars.model in ["InferKit", "Colab", "OAI", "ReadOnly", "TPUMeshTransforme
|
||||||
tokenizer = GPT2Tokenizer.from_pretrained(vars.model, cache_dir="cache/")
|
tokenizer = GPT2Tokenizer.from_pretrained(vars.model, cache_dir="cache/")
|
||||||
if(vars.hascuda):
|
if(vars.hascuda):
|
||||||
if(vars.usegpu):
|
if(vars.usegpu):
|
||||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
with(maybe_use_float16()):
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||||
vars.modeldim = get_hidden_size_from_model(model)
|
vars.modeldim = get_hidden_size_from_model(model)
|
||||||
model = model.half().to(0)
|
model = model.half().to(0)
|
||||||
generator = model.generate
|
generator = model.generate
|
||||||
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
|
elif(vars.breakmodel): # Use both RAM and VRAM (breakmodel)
|
||||||
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
with(maybe_use_float16()):
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(vars.model, cache_dir="cache/", **maybe_low_cpu_mem_usage())
|
||||||
vars.modeldim = get_hidden_size_from_model(model)
|
vars.modeldim = get_hidden_size_from_model(model)
|
||||||
device_config(model)
|
device_config(model)
|
||||||
else:
|
else:
|
||||||
|
|
Loading…
Reference in New Issue