Use aria2 to download split checkpoints
This commit is contained in:
parent
7fcc1a9acb
commit
a388c63023
14
aiserver.py
14
aiserver.py
|
@ -1111,6 +1111,13 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
|||
import transformers.generation_utils
|
||||
from transformers import __version__ as transformers_version
|
||||
|
||||
from transformers import PreTrainedModel
|
||||
old_from_pretrained = PreTrainedModel.from_pretrained
|
||||
def new_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
|
||||
utils.aria2_hook(pretrained_model_name_or_path, **kwargs)
|
||||
return old_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
||||
PreTrainedModel.from_pretrained = new_from_pretrained
|
||||
|
||||
# Lazy loader
|
||||
import torch_lazy_loader
|
||||
def get_lazy_load_callback(n_layers, convert_to_float16=True):
|
||||
|
@ -1535,6 +1542,13 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go
|
|||
from transformers import GPT2TokenizerFast
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", cache_dir="cache/")
|
||||
else:
|
||||
from transformers import PreTrainedModel
|
||||
old_from_pretrained = PreTrainedModel.from_pretrained
|
||||
def new_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
|
||||
utils.aria2_hook(pretrained_model_name_or_path, **kwargs)
|
||||
return old_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
||||
PreTrainedModel.from_pretrained = new_from_pretrained
|
||||
|
||||
def tpumtjgetsofttokens():
|
||||
soft_tokens = None
|
||||
if(vars.sp is None):
|
||||
|
|
|
@ -162,7 +162,7 @@ if [ "$init" != "skip" ]; then
|
|||
fi
|
||||
|
||||
# Make sure Colab has the system dependencies
|
||||
sudo apt install netbase -y
|
||||
sudo apt install netbase aria2 -y
|
||||
npm install -g localtunnel
|
||||
fi
|
||||
|
||||
|
@ -186,7 +186,6 @@ fi
|
|||
|
||||
#Download routine for Aria2c scripts
|
||||
if [ ! -z ${aria2+x} ]; then
|
||||
apt install aria2 -y
|
||||
curl -L $aria2 | aria2c -c -i- -d$dloc --user-agent=KoboldAI --file-allocation=none
|
||||
fi
|
||||
|
||||
|
|
91
utils.py
91
utils.py
|
@ -1,5 +1,11 @@
|
|||
from threading import Timer
|
||||
import re
|
||||
import shutil
|
||||
import json
|
||||
import subprocess
|
||||
import tempfile
|
||||
import requests
|
||||
import os
|
||||
|
||||
vars = None
|
||||
|
||||
|
@ -125,3 +131,88 @@ def decodenewlines(txt):
|
|||
if(vars.newlinemode == "s"):
|
||||
return txt.replace("</s>", '\n')
|
||||
return txt
|
||||
|
||||
#==================================================================#
|
||||
# Downloads sharded huggingface checkpoints using aria2c if possible
|
||||
#==================================================================#
|
||||
def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, mirror=None, **kwargs):
|
||||
import transformers
|
||||
import transformers.modeling_utils
|
||||
from huggingface_hub import HfFolder
|
||||
if shutil.which("aria2c") is None: # Don't do anything if aria2 is not installed
|
||||
return
|
||||
if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path) or transformers.modeling_utils.is_remote_url(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path + ".index"):
|
||||
return
|
||||
if proxies:
|
||||
print("WARNING: KoboldAI does not support using aria2 to download models from huggingface.co through a proxy. Disabling aria2 download mode.")
|
||||
return
|
||||
if use_auth_token:
|
||||
if isinstance(use_auth_token, str):
|
||||
token = use_auth_token
|
||||
else:
|
||||
token = HfFolder.get_token()
|
||||
if token is None:
|
||||
raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
|
||||
_cache_dir = str(cache_dir) if cache_dir is not None else transformers.TRANSFORMERS_CACHE
|
||||
sharded = False
|
||||
while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file
|
||||
try:
|
||||
filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME
|
||||
except AttributeError:
|
||||
return
|
||||
url = transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, filename, revision=revision, mirror=mirror)
|
||||
try:
|
||||
transformers.file_utils.get_from_cache(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent)
|
||||
except transformers.file_utils.RepositoryNotFoundError:
|
||||
raise EnvironmentError(
|
||||
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
|
||||
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
|
||||
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
|
||||
"login` and pass `use_auth_token=True`."
|
||||
)
|
||||
except transformers.file_utils.RevisionNotFoundError:
|
||||
raise EnvironmentError(
|
||||
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
|
||||
"this model name. Check the model page at "
|
||||
f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
|
||||
)
|
||||
except transformers.file_utils.EntryNotFoundError:
|
||||
if sharded:
|
||||
return
|
||||
else:
|
||||
sharded = True
|
||||
else:
|
||||
break
|
||||
if not sharded: # If the model has a pytorch_model.bin file, that's the only large file to download so it's probably more efficient to just let transformers download it
|
||||
return
|
||||
# Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it
|
||||
map_filename = transformers.file_utils.cached_path(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent)
|
||||
with open(map_filename) as f:
|
||||
map_data = json.load(f)
|
||||
filenames = set(map_data["weight_map"].values())
|
||||
urls = [transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, n, revision=revision, mirror=mirror) for n in filenames]
|
||||
def is_cached(url):
|
||||
try:
|
||||
transformers.file_utils.get_from_cache(url, cache_dir=cache_dir, local_files_only=True)
|
||||
except FileNotFoundError:
|
||||
return False
|
||||
return True
|
||||
if not force_download:
|
||||
if all(is_cached(u) for u in urls):
|
||||
return
|
||||
elif local_files_only:
|
||||
raise FileNotFoundError("Cannot find the requested files in the cached path and outgoing traffic has been disabled. To enable model look-ups and downloads online, set 'local_files_only' to False.")
|
||||
headers = {"user-agent": transformers.file_utils.http_user_agent(user_agent)}
|
||||
if use_auth_token:
|
||||
headers["authorization"] = f"Bearer {use_auth_token}"
|
||||
etags = [h.get("X-Linked-Etag") or h.get("ETag") for u in urls for h in [requests.head(u, headers=headers, allow_redirects=False, proxies=proxies, timeout=10).headers]]
|
||||
filenames = [transformers.file_utils.url_to_filename(u, t) for u, t in zip(urls, etags)]
|
||||
aria2_config = "\n".join(f"{u}\n out={n}" for u, n in zip(urls, filenames)).encode()
|
||||
with tempfile.NamedTemporaryFile("w+b", delete=True) as f:
|
||||
f.write(aria2_config)
|
||||
p = subprocess.Popen(["aria2c", "-d", _cache_dir, "-i", f.name] + (["-c"] if not force_download else []) + (["-U", str(user_agent)] if user_agent is not None else []) + ([f"--header='Authorization: Bearer {token}'"] if use_auth_token else []), stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
||||
for line in p.stdout:
|
||||
print(line.decode(), end="", flush=True)
|
||||
for u, t, n in zip(urls, etags, filenames):
|
||||
with open(os.path.join(_cache_dir, n + ".json"), "w") as f:
|
||||
json.dump({"url": u, "etag": t}, f)
|
||||
|
|
Loading…
Reference in New Issue