Upload torch_lazy_loader.py

This commit is contained in:
Gnome Ann 2022-03-01 15:40:44 -05:00
parent 50ad6864c9
commit a0344b429c

95
torch_lazy_loader.py Normal file
View File

@ -0,0 +1,95 @@
import contextlib
import pickle
import torch
from typing import Any, Callable, Dict, Optional, Tuple, Type
class LazyTensor:
def __init__(self, storage_type: Type[torch._StorageBase], key: str, location: str, nelements: int, storage_offset: Optional[int] = None, shape: Optional[Tuple[int, ...]] = None, stride: Optional[Tuple[int, ...]] = None, requires_grad=False, backward_hooks: Any = None):
self.storage_type = storage_type
self.key = key
self.location = location
self.nelements = nelements
self.storage_offset = storage_offset
self.shape = shape
self.stride = stride
self.requires_grad = requires_grad
self.backward_hooks = backward_hooks
def __view(self, f: Callable):
return f"{type(self).__name__}(storage_type={f(self.storage_type)}, key={f(self.key)}, location={f(self.location)}, nelements={f(self.nelements)}, storage_offset={f(self.storage_offset)}, shape={f(self.shape)}, stride={f(self.stride)}, requires_grad={f(self.requires_grad)}, backward_hooks={f(self.backward_hooks)})"
def __repr__(self):
return self.__view(repr)
def materialize(self, checkpoint: torch._C.PyTorchFileReader, map_location=None) -> torch.Tensor:
storage_dtype = self.storage_type(0).dtype
storage = checkpoint.get_storage_from_record(f"data/{self.key}", self.nelements, storage_dtype).storage()
storage = torch.serialization._get_restore_location(map_location)(storage, self.location)
tensor = torch.tensor([], dtype=storage.dtype, device=storage.device)
tensor.set_(storage, self.storage_offset, self.shape, self.stride)
tensor.requires_grad = self.requires_grad
tensor._backward_hooks = self.backward_hooks
return tensor
class _LazyUnpickler(pickle.Unpickler):
lazy_loaded_storages: Dict[str, LazyTensor]
def __init__(self, *args, **kwargs):
self.lazy_loaded_storages = {}
return super().__init__(*args, **kwargs)
def forced_persistent_load(self, saved_id):
assert isinstance(saved_id, tuple)
typename = saved_id[0]
assert typename == "storage", f"Unknown typename for persistent_load, expected 'storage' but got '{typename}'"
storage_type, key, location, nelements = saved_id[1:]
if key not in self.lazy_loaded_storages:
self.lazy_loaded_storages[key] = LazyTensor(storage_type, key, location, nelements)
return self.lazy_loaded_storages[key]
def load(self, *args, **kwargs):
self.persistent_load = self.forced_persistent_load
retval = super().load(*args, **kwargs)
self.lazy_loaded_storages = {}
return retval
def _rebuild_tensor(lazy_storage: LazyTensor, storage_offset, shape, stride):
lazy_storage.storage_offset = storage_offset
lazy_storage.shape = shape
lazy_storage.stride = stride
return lazy_storage
@contextlib.contextmanager
def use_lazy_torch_load(enable=True, callback: Optional[Callable] = None):
if not enable:
yield False
return
old_unpickler = pickle.Unpickler
pickle.Unpickler = _LazyUnpickler
old_rebuild_tensor = torch._utils._rebuild_tensor
torch._utils._rebuild_tensor = _rebuild_tensor
old_torch_load = torch.load
def torch_load(f, map_location=None, pickle_module=pickle, **pickle_load_args):
retval = old_torch_load(f=f, map_location=map_location, pickle_module=pickle_module, **pickle_load_args)
if callback is not None:
callback(retval, f=f, map_location=map_location, pickle_module=pickle_module, **pickle_load_args)
return retval
torch.load = torch_load
yield True
pickle.Unpickler = old_unpickler
torch._utils._rebuild_tensor = old_rebuild_tensor
torch.load = old_torch_load