mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Add TPU support for dynamic WI scan and generation modifiers
This commit is contained in:
@ -1,5 +1,5 @@
|
||||
import multiprocessing
|
||||
from typing import Any, Callable, Dict, List, Optional, TypeVar
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar
|
||||
import progressbar
|
||||
import time
|
||||
import os
|
||||
@ -20,6 +20,10 @@ from mesh_transformer.transformer_shard import CausalTransformer, CausalTransfor
|
||||
params: Dict[str, Any] = {}
|
||||
|
||||
|
||||
def warper_callback(generated, logits, excluded_world_info, n_generated) -> Tuple[bool, bool]:
|
||||
raise NotImplementedError("`tpu_mtj_backend.warper_callback()` needs to be defined")
|
||||
|
||||
|
||||
def show_spinner():
|
||||
bar = progressbar.ProgressBar(max_value=progressbar.UnknownLength, widgets=[progressbar.Timer(), ' ', progressbar.BouncingBar(left='[', right=']', marker='█')])
|
||||
i = 0
|
||||
@ -235,13 +239,13 @@ class PenalizingCausalTransformer(CausalTransformer):
|
||||
def generate_initial_inner(context, ctx_length):
|
||||
# Give the initial context to the transformer
|
||||
transformer = CausalTransformerShard(config)
|
||||
def generate_initial_scan_fn(sequence_index, _):
|
||||
_, initial_state = transformer.generate_initial(context, ctx_length, soft_embeddings=soft_embeddings)
|
||||
def generate_initial_scan_fn(sequence_index, c):
|
||||
_, initial_state = transformer.generate_initial(c, ctx_length, soft_embeddings=soft_embeddings)
|
||||
generated_index = config["seq"]
|
||||
# Add that information to generate_loop_fn's starting state
|
||||
initial_state = (jnp.empty(config["n_vocab"], dtype=jnp.float32), generated_index, sequence_index) + initial_state
|
||||
return sequence_index+1, initial_state
|
||||
_, initial_states = jax.lax.scan(generate_initial_scan_fn, 0, None, numseqs)
|
||||
_, initial_states = jax.lax.scan(generate_initial_scan_fn, 0, context, numseqs)
|
||||
sample_key = initial_states[-1][0]
|
||||
initial_states = list(list(jax.tree_map(lambda x: x[i], initial_states[:-1])) for i in range(numseqs))
|
||||
return initial_states, sample_key
|
||||
@ -307,7 +311,8 @@ class PenalizingCausalTransformer(CausalTransformer):
|
||||
out_axes=["shard", "batch", ...],
|
||||
axis_resources={'shard': 'mp', 'batch': 'dp'},
|
||||
)
|
||||
def generate(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None):
|
||||
def generate(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None, excluded_world_info=None, use_callback=True):
|
||||
assert excluded_world_info is not None
|
||||
assert not return_logits
|
||||
assert gen_length.ndim == 1
|
||||
assert soft_embeddings is not None
|
||||
@ -318,24 +323,34 @@ class PenalizingCausalTransformer(CausalTransformer):
|
||||
numseqs_aux = batch_xmap(_numseqs_aux)
|
||||
sample_data = [
|
||||
[
|
||||
np.pad(ctx[0], (0, params["seq"]), constant_values=pad_token_id),
|
||||
np.pad(ctx[0][i], (0, params["seq"]), constant_values=pad_token_id),
|
||||
params["seq"],
|
||||
None,
|
||||
np.empty((), dtype=np.uint32),
|
||||
]
|
||||
for _ in range(numseqs)
|
||||
for i in range(numseqs)
|
||||
]
|
||||
repetition_penalty = sampler_options.pop("repetition_penalty", 1.0)
|
||||
n_generated = 0
|
||||
regeneration_required = False
|
||||
halt = False
|
||||
generate_data, sample_key = self.generate_initial_xmap(self.state, jnp.array(key.take(batch_size)), ctx, ctx_length, numseqs_aux, soft_embeddings)
|
||||
sample_key = np.asarray(sample_key[0, 0])
|
||||
for _ in range(gen_length[0].item()):
|
||||
while True:
|
||||
generate_data, = self.generate_once_xmap(generate_data, self.state, numseqs_aux, soft_embeddings)
|
||||
for i in range(numseqs):
|
||||
sample_data[i][2] = np.array(generate_data[0][i][0, 0], copy=True)
|
||||
sample_data[i][2] = np.array(generate_data[i][0][0, 0], copy=True)
|
||||
sample_data, sample_key = sample_func(sample_data, sample_key, _numseqs_aux, badwords, repetition_penalty, sampler_options)
|
||||
for i in range(numseqs):
|
||||
generate_data[i][3] = np.tile(sample_data[i][0][sample_data[i][1]-1][np.newaxis, np.newaxis], (params["cores_per_replica"], 1, 1))
|
||||
return sample_data, sample_key
|
||||
n_generated += 1
|
||||
if use_callback:
|
||||
excluded_world_info, regeneration_required, halt = warper_callback(np.uint32(tuple(d[0] for d in sample_data)), np.float32(tuple(d[2] for d in sample_data)), excluded_world_info, n_generated)
|
||||
if regeneration_required or halt:
|
||||
break
|
||||
else:
|
||||
break
|
||||
return sample_data, n_generated, regeneration_required, halt
|
||||
|
||||
|
||||
def infer(
|
||||
@ -349,15 +364,18 @@ def infer(
|
||||
gen_len=80,
|
||||
soft_embeddings: Optional[np.array] = None,
|
||||
soft_tokens: Optional[np.array] = None,
|
||||
) -> List[str]:
|
||||
excluded_world_info = None,
|
||||
use_callback=True,
|
||||
) -> Tuple[List[np.array], int, bool, bool]:
|
||||
assert excluded_world_info is not None
|
||||
maps.thread_resources.env = thread_resources_env
|
||||
total_batch = 1
|
||||
tokens = context
|
||||
if(soft_tokens is not None):
|
||||
tokens = np.uint32(np.concatenate((soft_tokens, tokens)))
|
||||
provided_ctx = tokens.shape[0]
|
||||
tokens = np.uint32(np.concatenate((np.tile(soft_tokens, (tokens.shape[0], 1)), tokens), axis=-1))
|
||||
provided_ctx = tokens.shape[-1]
|
||||
pad_amount = seq - provided_ctx
|
||||
padded_tokens = np.pad(tokens, ((pad_amount, 0),), constant_values=pad_token_id)
|
||||
padded_tokens = np.pad(tokens, ((0, 0), (pad_amount, 0)), constant_values=pad_token_id)
|
||||
batched_tokens = np.array([padded_tokens] * total_batch)
|
||||
samples = []
|
||||
generator_params = {
|
||||
@ -374,10 +392,12 @@ def infer(
|
||||
numseqs,
|
||||
generator_params,
|
||||
soft_embeddings=soft_embeddings,
|
||||
)[0]
|
||||
for out in output:
|
||||
excluded_world_info=excluded_world_info,
|
||||
use_callback=use_callback,
|
||||
)
|
||||
for out in output[0]:
|
||||
samples.append(out[0][params["seq"] : params["seq"] + gen_len])
|
||||
return samples
|
||||
return (samples,) + output[1:]
|
||||
|
||||
|
||||
def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", **kwargs) -> None:
|
||||
@ -405,32 +425,25 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", **kwargs)
|
||||
jax.host_count = jax.process_count
|
||||
jax.host_id = jax.process_index
|
||||
|
||||
while True:
|
||||
print("Connecting to your Colab instance's TPU", flush=True)
|
||||
spinner = multiprocessing.Process(target=show_spinner, args=())
|
||||
spinner.start()
|
||||
colab_tpu_addr = os.environ['COLAB_TPU_ADDR'].split(':')[0]
|
||||
url = f'http://{colab_tpu_addr}:8475/requestversion/{driver_version}'
|
||||
requests.post(url)
|
||||
spinner.terminate()
|
||||
print()
|
||||
config.FLAGS.jax_xla_backend = "tpu_driver"
|
||||
config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR']
|
||||
print("Connecting to your Colab instance's TPU", flush=True)
|
||||
spinner = multiprocessing.Process(target=show_spinner, args=())
|
||||
spinner.start()
|
||||
colab_tpu_addr = os.environ['COLAB_TPU_ADDR'].split(':')[0]
|
||||
url = f'http://{colab_tpu_addr}:8475/requestversion/{driver_version}'
|
||||
requests.post(url)
|
||||
spinner.terminate()
|
||||
print()
|
||||
config.FLAGS.jax_xla_backend = "tpu_driver"
|
||||
config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR']
|
||||
|
||||
cores_per_replica = params["cores_per_replica"]
|
||||
seq = params["seq"]
|
||||
params["optimizer"] = optax.scale(0)
|
||||
mesh_shape = (1, cores_per_replica)
|
||||
try:
|
||||
devices = np.array(jax.devices()[:cores_per_replica]).reshape(mesh_shape)
|
||||
except RuntimeError as e:
|
||||
if "DEADLINE_EXCEEDED" not in str(e):
|
||||
raise e
|
||||
continue
|
||||
thread_resources_env = maps.ResourceEnv(maps.Mesh(devices, ('dp', 'mp')), ())
|
||||
maps.thread_resources.env = thread_resources_env
|
||||
tokenizer = transformers.GPT2TokenizerFast.from_pretrained('gpt2')
|
||||
break
|
||||
cores_per_replica = params["cores_per_replica"]
|
||||
seq = params["seq"]
|
||||
params["optimizer"] = optax.scale(0)
|
||||
mesh_shape = (1, cores_per_replica)
|
||||
devices = np.array(jax.devices()[:cores_per_replica]).reshape(mesh_shape)
|
||||
thread_resources_env = maps.ResourceEnv(maps.Mesh(devices, ('dp', 'mp')), ())
|
||||
maps.thread_resources.env = thread_resources_env
|
||||
tokenizer = transformers.GPT2TokenizerFast.from_pretrained('gpt2')
|
||||
|
||||
global shard_xmap, batch_xmap
|
||||
shard_xmap = __shard_xmap()
|
||||
|
Reference in New Issue
Block a user