Change soft prompt implementation to a more universal one
This commit is contained in:
parent
0ea4fa9c87
commit
91643be10a
37
aiserver.py
37
aiserver.py
|
@ -1247,18 +1247,20 @@ def get_oai_models(key):
|
|||
|
||||
|
||||
# Function to patch transformers to use our soft prompt
|
||||
def patch_causallm(cls):
|
||||
if(getattr(cls, "_koboldai_patch_causallm_patched", False)):
|
||||
return
|
||||
old_forward = cls.forward
|
||||
def new_causallm_forward(self, *args, **kwargs):
|
||||
input_ids = kwargs.get('input_ids').to(self.device)
|
||||
def patch_causallm(model):
|
||||
from torch.nn import Embedding
|
||||
if(getattr(Embedding, "_koboldai_patch_causallm_model", None)):
|
||||
Embedding._koboldai_patch_causallm_model = model
|
||||
return model
|
||||
old_embedding_call = Embedding.__call__
|
||||
def new_embedding_call(self, input_ids, *args, **kwargs):
|
||||
if(Embedding._koboldai_patch_causallm_model.get_input_embeddings() is not self):
|
||||
return old_embedding_call(self, input_ids, *args, **kwargs)
|
||||
assert input_ids is not None
|
||||
kwargs['input_ids'] = None
|
||||
if(vars.sp is not None):
|
||||
shifted_input_ids = input_ids - self.config.vocab_size
|
||||
input_ids.clamp_(max=self.config.vocab_size-1)
|
||||
inputs_embeds = self.get_input_embeddings()(input_ids)
|
||||
shifted_input_ids = input_ids - model.config.vocab_size
|
||||
input_ids.clamp_(max=model.config.vocab_size-1)
|
||||
inputs_embeds = old_embedding_call(self, input_ids, *args, **kwargs)
|
||||
if(vars.sp is not None):
|
||||
vars.sp = vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device)
|
||||
inputs_embeds = torch.where(
|
||||
|
@ -1266,13 +1268,10 @@ def patch_causallm(cls):
|
|||
vars.sp[shifted_input_ids.clamp(min=0)],
|
||||
inputs_embeds,
|
||||
)
|
||||
if(hasattr(self, "model") and hasattr(self.model, "embed_scale")):
|
||||
inputs_embeds *= self.model.embed_scale
|
||||
kwargs['inputs_embeds'] = inputs_embeds
|
||||
return old_forward(self, *args, **kwargs)
|
||||
cls.forward = new_causallm_forward
|
||||
cls._koboldai_patch_causallm_patched = True
|
||||
return cls
|
||||
return inputs_embeds
|
||||
Embedding.__call__ = new_embedding_call
|
||||
Embedding._koboldai_patch_causallm_model = model
|
||||
return model
|
||||
|
||||
|
||||
def patch_transformers():
|
||||
|
@ -1864,7 +1863,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||
else:
|
||||
model = model.to('cpu').float()
|
||||
generator = model.generate
|
||||
patch_causallm(model.__class__)
|
||||
patch_causallm(model)
|
||||
# Use the Generic implementation
|
||||
else:
|
||||
lowmem = maybe_low_cpu_mem_usage()
|
||||
|
@ -1998,7 +1997,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||
if(vars.badwordsids is vars.badwordsids_default and vars.model_type not in ("gpt2", "gpt_neo", "gptj", "xglm")):
|
||||
vars.badwordsids = [[v] for k, v in tokenizer.get_vocab().items() if any(c in k for c in "<>[]")]
|
||||
|
||||
patch_causallm(model.__class__)
|
||||
patch_causallm(model)
|
||||
|
||||
if(vars.hascuda):
|
||||
if(vars.usegpu):
|
||||
|
|
Loading…
Reference in New Issue