sendtoapi now automatically detects tokenizer

This commit is contained in:
vfbd 2022-08-11 14:57:13 -04:00
parent d328c2c1de
commit 8b299525fd
1 changed files with 28 additions and 22 deletions

View File

@ -369,6 +369,7 @@ class vars:
use_colab_tpu = os.environ.get("COLAB_TPU_ADDR", "") != "" or os.environ.get("TPU_NAME", "") != "" # Whether or not we're in a Colab TPU instance or Kaggle TPU instance and are going to use the TPU rather than the CPU
revision = None
standalone = False
api_tokenizer_id = None
disable_set_aibusy = False
disable_input_formatting = False
disable_output_formatting = False
@ -1259,7 +1260,6 @@ def general_startup(override_args=None):
parser.add_argument("--override_rename", action='store_true', help="Renaming stories from inside the browser is disabled if you are using --remote and enabled otherwise. Using this option will instead allow renaming stories if using --remote and prevent renaming stories otherwise.")
parser.add_argument("--configname", help="Force a fixed configuration name to aid with config management.")
parser.add_argument("--colab", action='store_true', help="Optimize for Google Colab.")
parser.add_argument("--tokenizer", type=str, help="When using the \"KoboldAI API\" backend option, this controls the tokenizer to use. This can be set to a Hugging Face model ID or the path to a folder under \"models\" in the KoboldAI folder.")
parser.add_argument("--nobreakmodel", action='store_true', help="Disables Breakmodel support completely.")
parser.add_argument("--unblock", action='store_true', default=False, help="Unblocks the KoboldAI port to be accessible from other machines without optimizing for remote play (It is recommended to use --host instead)")
parser.add_argument("--quiet", action='store_true', default=False, help="If present will suppress any story related text from showing on the console")
@ -2539,30 +2539,10 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
}
# If we're running Colab or OAI, we still need a tokenizer.
if(vars.model == "Colab"):
if(vars.model in ("Colab", "API")):
from transformers import GPT2TokenizerFast
tokenizer = GPT2TokenizerFast.from_pretrained("EleutherAI/gpt-neo-2.7B", revision=vars.revision, cache_dir="cache")
loadsettings()
elif(vars.model == "API"):
tokenizer_id = getattr(args, "tokenizer", None)
if tokenizer_id is None:
tokenizer_id = "EleutherAI/gpt-neo-2.7B"
if(os.path.isdir(tokenizer_id)):
try:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=vars.revision, cache_dir="cache")
except:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=vars.revision, cache_dir="cache", use_fast=False)
elif(os.path.isdir("models/{}".format(args.tokenizer.replace('/', '_')))):
try:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(tokenizer_id.replace('/', '_')), revision=vars.revision, cache_dir="cache")
except:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(tokenizer_id.replace('/', '_')), revision=vars.revision, cache_dir="cache", use_fast=False)
else:
try:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=vars.revision, cache_dir="cache")
except:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=vars.revision, cache_dir="cache", use_fast=False)
loadsettings()
elif(vars.model == "OAI"):
from transformers import GPT2TokenizerFast
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=vars.revision, cache_dir="cache")
@ -3912,6 +3892,32 @@ def actionsubmit(data, actionmode=0, force_submit=False, force_prompt_gen=False,
while(True):
set_aibusy(1)
if(vars.model == "API"):
global tokenizer
tokenizer_id = requests.get(
vars.colaburl[:-8] + "/api/v1/model",
).json()["result"]
if tokenizer_id != vars.api_tokenizer_id:
try:
if(os.path.isdir(tokenizer_id)):
try:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=vars.revision, cache_dir="cache")
except:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=vars.revision, cache_dir="cache", use_fast=False)
elif(os.path.isdir("models/{}".format(tokenizer_id.replace('/', '_')))):
try:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(tokenizer_id.replace('/', '_')), revision=vars.revision, cache_dir="cache")
except:
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(tokenizer_id.replace('/', '_')), revision=vars.revision, cache_dir="cache", use_fast=False)
else:
try:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=vars.revision, cache_dir="cache")
except:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, revision=vars.revision, cache_dir="cache", use_fast=False)
except:
print(f"WARNING: Unknown tokenizer {repr(tokenizer_id)}")
vars.api_tokenizer_id = tokenizer_id
if(disable_recentrng):
vars.recentrng = vars.recentrngm = None