Merge pull request #65 from pi6am/feat/exllama-badwords

Add the eos token to exllama bad words.
This commit is contained in:
Llama
2023-08-27 17:03:25 -07:00
committed by GitHub

View File

@@ -95,6 +95,9 @@ class model_backend(InferenceModel):
post_token_probs=False, post_token_probs=False,
) )
# We need to wait until the tokenizer is available to fill this in.
self.badwordsids = []
def is_valid(self, model_name, model_path, menu_path): def is_valid(self, model_name, model_path, menu_path):
gptq_model, _ = load_model_gptq_settings(model_path) gptq_model, _ = load_model_gptq_settings(model_path)
try: try:
@@ -119,6 +122,7 @@ class model_backend(InferenceModel):
self.model = self._get_model(self.get_local_model_path(), {}) self.model = self._get_model(self.get_local_model_path(), {})
self.tokenizer = self._get_tokenizer(self.get_local_model_path()) self.tokenizer = self._get_tokenizer(self.get_local_model_path())
self.badwordsids = [self.tokenizer.bos_token_id, self.tokenizer.eos_token_id]
self.cache = ExLlamaCache(self.model) self.cache = ExLlamaCache(self.model)
self.generator = ExLlamaGenerator(self.model, self.tokenizer.tokenizer, self.cache) self.generator = ExLlamaGenerator(self.model, self.tokenizer.tokenizer, self.cache)
@@ -207,6 +211,10 @@ class model_backend(InferenceModel):
return result return result
object.__setattr__(self.tokenizer, '__call__', call_wrapper.__get__(self.tokenizer)) object.__setattr__(self.tokenizer, '__call__', call_wrapper.__get__(self.tokenizer))
# Cache the newline token (for single line mode)
# Since there is only one Llama token containing newline, just encode \n
self.newline_tokens = self.tokenizer.encode("\n")
def unload(self): def unload(self):
self.model_config = None self.model_config = None
@@ -275,6 +283,10 @@ class model_backend(InferenceModel):
if seed: if seed:
torch.manual_seed(seed) torch.manual_seed(seed)
bad_words_ids = self.badwordsids
if single_line:
bad_words_ids = list(bad_words_ids) + self.newline_tokens
if not isinstance(prompt_tokens, torch.Tensor): if not isinstance(prompt_tokens, torch.Tensor):
gen_in = torch.tensor(prompt_tokens, dtype=torch.long)[None] gen_in = torch.tensor(prompt_tokens, dtype=torch.long)[None]
else: else:
@@ -285,7 +297,8 @@ class model_backend(InferenceModel):
trim_count = 0 trim_count = 0
for i in range(max_new): for i in range(max_new):
logits = self.model.forward(self.generator.sequence[:, -1:], self.generator.cache) logits = self.model.forward(self.generator.sequence[:, -1:], self.generator.cache)
logits[:, :, self.tokenizer.bos_token_id] = -10000.0 for bad_word_id in bad_words_ids:
logits[:, :, bad_word_id] = -10000.0
logits = torch.unsqueeze(logits[0, -1, :], 0) logits = torch.unsqueeze(logits[0, -1, :], 0)