Merge branch 'united' of https://github.com/henk717/koboldai into united

This commit is contained in:
Henk
2023-12-19 00:13:13 +01:00
8 changed files with 435 additions and 84 deletions

View File

@@ -8,7 +8,7 @@ dependencies:
- flask-socketio=5.3.2
- flask-session=0.5.0
- python-socketio=5.7.2
- python=3.8.*
- python=3.10.*
- eventlet=0.33.3
- dnspython=2.2.1
- markdown
@@ -24,25 +24,25 @@ dependencies:
- psutil
- ffmpeg
- pip:
- https://github.com/Nuullll/intel-extension-for-pytorch/releases/download/v2.1.10%2Bxpu/torch-2.1.0a0+cxx11.abi-cp310-cp310-win_amd64.whl; sys_platform == 'win32'
- https://github.com/Nuullll/intel-extension-for-pytorch/releases/download/v2.1.10%2Bxpu/intel_extension_for_pytorch-2.1.10+xpu-cp310-cp310-win_amd64.whl; sys_platform == 'win32'
- --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
- torch==2.0.1a0; sys_platform == 'linux'
- torch==2.0.0a0; sys_platform == 'win32'
- intel_extension_for_pytorch==2.0.110+xpu; sys_platform == 'linux'
- intel_extension_for_pytorch==2.0.110+gitba7f6c1; sys_platform == 'win32'
- torch==2.1.0a0; sys_platform == 'linux'
- intel-extension-for-pytorch==2.1.10+xpu; sys_platform == 'linux'
- bigdl-llm
- bigdl_core_xe
- openvino
- onnxruntime-openvino
- flask-cloudflared==0.0.10
- flask-ngrok
- flask-cors
- Werkzeug==2.3.7
- lupa==1.10
- transformers[sentencepiece]==4.34.0
- intel-extension-for-transformers
- huggingface_hub==0.16.4
- optimum[onnxruntime]==1.13.2
- optimum-intel
- safetensors==0.3.3
- accelerate==0.21.0
- lupa==1.12
- transformers[sentencepiece]==4.33.3
- huggingface_hub==0.19.4
- optimum[onnxruntime]==1.16.1
- safetensors==0.4.1
- accelerate==0.25.0
- git+https://github.com/VE-FORBRYDERNE/mkultra
- flask-session
- ansi2html
@@ -52,15 +52,11 @@ dependencies:
- pydub
- diffusers
- git+https://github.com/0cc4m/hf_bleeding_edge/
- https://github.com/0cc4m/GPTQ-for-LLaMa/releases/download/0.0.6/gptq_koboldai-0.0.6-cp38-cp38-linux_x86_64.whl; sys_platform == 'linux'
- https://github.com/0cc4m/GPTQ-for-LLaMa/releases/download/0.0.6/gptq_koboldai-0.0.6-cp38-cp38-win_amd64.whl; sys_platform == 'win32'
- https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.2/auto_gptq-0.4.2+cu118-cp38-cp38-linux_x86_64.whl; sys_platform == 'linux'
- https://github.com/PanQiWei/AutoGPTQ/releases/download/v0.4.2/auto_gptq-0.4.2+cu118-cp38-cp38-win_amd64.whl; sys_platform == 'win32'
- https://huggingface.github.io/autogptq-index/whl/cu118/auto-gptq/auto_gptq-0.5.1%2Bcu118-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl; sys_platform == 'linux'
- https://huggingface.github.io/autogptq-index/whl/cu118/auto-gptq/auto_gptq-0.5.1%2Bcu118-cp310-cp310-win_amd64.whl; sys_platform == 'win32'
- einops
- peft==0.3.0
- peft==0.7.1
- scipy
- https://github.com/0cc4m/exllama/releases/download/0.0.7/exllama-0.0.7-cp38-cp38-linux_x86_64.whl; sys_platform == 'linux'
- https://github.com/0cc4m/exllama/releases/download/0.0.7/exllama-0.0.7-cp38-cp38-win_amd64.whl; sys_platform == 'win32'
- windows-curses; sys_platform == 'win32'
- pynvml
- omegaconf

View File

@@ -0,0 +1,341 @@
from __future__ import annotations
try:
import os
import json
import shutil
import traceback
from typing import Dict
import torch
from torch.nn import Embedding
from transformers.utils import WEIGHTS_NAME, WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, TF2_WEIGHTS_INDEX_NAME, TF_WEIGHTS_NAME, FLAX_WEIGHTS_NAME, FLAX_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME
import utils
from logger import logger
from modeling.inference_models.hf_torch import HFTorchInferenceModel
from bigdl.llm.transformers import AutoModelForCausalLM
load_failed = False
except Exception:
load_failed = True
model_backend_name = "BigDL LLM"
model_backend_type = "Huggingface" #This should be a generic name in case multiple model backends are compatible (think Hugging Face Custom and Basic Hugging Face)
class model_backend(HFTorchInferenceModel):
def __init__(self) -> None:
super().__init__()
self.lazy_load = False
self.nobreakmodel = True
self.disable = load_failed
self.has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
def _get_model(self, location: str, tf_kwargs: Dict):
tf_kwargs["revision"] = utils.koboldai_vars.revision
tf_kwargs["cache_dir"] = "cache"
tf_kwargs["load_in_4bit"] = True
tf_kwargs.pop("low_cpu_mem_usage", None)
# Try to determine model type from either AutoModel or falling back to legacy
try:
model = AutoModelForCausalLM.from_pretrained(
location,
offload_folder="accelerate-disk-cache",
torch_dtype=self._get_target_dtype(),
**tf_kwargs,
)
# We need to move the model to the desired device
if (not self.usegpu) or (torch.cuda.device_count() <= 0 and not self.has_xpu):
model = model.to("cpu")
elif self.has_xpu:
model = model.to("xpu")
else:
model = model.to("cuda")
return model
except Exception as e:
traceback_string = traceback.format_exc().lower()
if "out of memory" in traceback_string:
raise RuntimeError(
"One of your GPUs ran out of memory when KoboldAI tried to load your model."
)
# Model corrupted or serious loading problem. Stop here.
if "invalid load key" in traceback_string:
logger.error("Invalid load key! Aborting.")
raise
if utils.args.panic:
raise
logger.warning(f"Failed to load model: {e}")
logger.debug(traceback.format_exc())
# Function to patch transformers to use our soft prompt
def patch_embedding(self) -> None:
if getattr(Embedding, "_koboldai_patch_causallm_model", None):
Embedding._koboldai_patch_causallm_model = self.model
return
old_embedding_call = Embedding.__call__
kai_model = self
def new_embedding_call(self, input_ids, *args, **kwargs):
# Don't touch embeddings for models other than the core inference model (that's us!)
if (
Embedding._koboldai_patch_causallm_model.get_input_embeddings()
is not self
):
return old_embedding_call(self, input_ids, *args, **kwargs)
assert input_ids is not None
if utils.koboldai_vars.sp is not None:
shifted_input_ids = input_ids - kai_model.model.vocab_size
input_ids.clamp_(max=kai_model.model.config.vocab_size - 1)
inputs_embeds = old_embedding_call(self, input_ids, *args, **kwargs)
if utils.koboldai_vars.sp is not None:
utils.koboldai_vars.sp = utils.koboldai_vars.sp.to(
inputs_embeds.dtype
).to(inputs_embeds.device)
inputs_embeds = torch.where(
(shifted_input_ids >= 0)[..., None],
utils.koboldai_vars.sp[shifted_input_ids.clamp(min=0)],
inputs_embeds,
)
return inputs_embeds
Embedding.__call__ = new_embedding_call
Embedding._koboldai_patch_causallm_model = self.model
def is_valid(self, model_name, model_path, menu_path):
base_is_valid = super().is_valid(model_name, model_path, menu_path)
path = False
gen_path = "models/{}".format(model_name.replace('/', '_'))
if model_path is not None and os.path.exists(model_path):
path = model_path
elif os.path.exists(gen_path):
path = gen_path
fnames = [WEIGHTS_NAME, WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, TF2_WEIGHTS_INDEX_NAME, TF_WEIGHTS_NAME, FLAX_WEIGHTS_NAME, FLAX_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME]
return base_is_valid and any(os.path.exists(os.path.join(path, fname)) for fname in fnames)
def _initialize_model(self):
return
def get_requested_parameters(self, model_name, model_path, menu_path, parameters = {}):
return super().get_requested_parameters(model_name, model_path, menu_path, parameters)
def set_input_parameters(self, parameters):
super().set_input_parameters(parameters)
self.usegpu = parameters['use_gpu'] if 'use_gpu' in parameters else False
def _load(self, save_model: bool, initial_load: bool) -> None:
utils.koboldai_vars.allowsp = True
# Make model path the same as the model name to make this consistent
# with the other loading method if it isn't a known model type. This
# code is not just a workaround for below, it is also used to make the
# behavior consistent with other loading methods - Henk717
# if utils.koboldai_vars.model not in ["NeoCustom", "GPT2Custom"]:
# utils.koboldai_vars.custmodpth = utils.koboldai_vars.model
if self.model_name == "NeoCustom":
self.model_name = os.path.basename(os.path.normpath(self.path))
utils.koboldai_vars.model = self.model_name
# If we specify a model and it's in the root directory, we need to move
# it to the models directory (legacy folder structure to new)
if self.get_local_model_path(legacy=True):
shutil.move(
self.get_local_model_path(legacy=True, ignore_existance=True),
self.get_local_model_path(ignore_existance=True),
)
self.init_model_config()
tf_kwargs = {
"low_cpu_mem_usage": True,
"use_cache": True # Workaround for models that accidentally turn cache to false
}
if self.model_type == "llama":
tf_kwargs.update({
"pretraining_tp": 1 # Workaround recommended by HF to fix their mistake on the config.json tuners adopted
})
logger.debug(
"hasgpu: {}".format(
utils.koboldai_vars.hascuda,
)
)
# Download model from Huggingface if it does not exist, otherwise load locally
if self.get_local_model_path():
# Model is stored locally, load it.
self.model = self._get_model(self.get_local_model_path(), tf_kwargs)
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
else:
# Model not stored locally, we need to download it.
# _rebuild_tensor patch for casting dtype and supporting LazyTensors
old_rebuild_tensor = torch._utils._rebuild_tensor
def new_rebuild_tensor(
storage: torch.Storage,
storage_offset,
shape,
stride,
):
dtype = storage.dtype
if dtype is torch.float32 and len(shape) >= 2:
utils.koboldai_vars.fp32_model = True
return old_rebuild_tensor(storage, storage_offset, shape, stride)
torch._utils._rebuild_tensor = new_rebuild_tensor
self.model = self._get_model(self.model_name, tf_kwargs)
self.tokenizer = self._get_tokenizer(self.model_name)
torch._utils._rebuild_tensor = old_rebuild_tensor
if save_model:
self.tokenizer.save_pretrained(
self.get_local_model_path(ignore_existance=True)
)
if utils.koboldai_vars.fp32_model:
# Use save_pretrained to convert fp32 models to fp16,
# unless we are using disk cache because save_pretrained
# is not supported in that case
self.model = self.model.half()
self.model.save_pretrained(
self.get_local_model_path(ignore_existance=True),
max_shard_size="500MiB",
)
else:
# For fp16 models, we can just copy the model files directly
import transformers.configuration_utils
import transformers.modeling_utils
import transformers.file_utils
import huggingface_hub
# Save the config.json
shutil.move(
os.path.realpath(
huggingface_hub.hf_hub_download(
self.model_name,
transformers.configuration_utils.CONFIG_NAME,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
local_files_only=True,
legacy_cache_layout=False,
)
),
os.path.join(
self.get_local_model_path(ignore_existance=True),
transformers.configuration_utils.CONFIG_NAME,
),
)
if utils.num_shards is None:
# Save the pytorch_model.bin or model.safetensors of an unsharded model
any_success = False
possible_checkpoint_names = [
transformers.modeling_utils.WEIGHTS_NAME,
"model.safetensors",
]
for possible_checkpoint_name in possible_checkpoint_names:
try:
shutil.move(
os.path.realpath(
huggingface_hub.hf_hub_download(
self.model_name,
possible_checkpoint_name,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
local_files_only=True,
legacy_cache_layout=False,
)
),
os.path.join(
self.get_local_model_path(
ignore_existance=True
),
possible_checkpoint_name,
),
)
any_success = True
except Exception:
pass
if not any_success:
raise RuntimeError(
f"Couldn't find any of {possible_checkpoint_names} in cache for {self.model_name} @ '{utils.koboldai_vars.revisison}'"
)
else:
# Handle saving sharded models
with open(utils.from_pretrained_index_filename) as f:
map_data = json.load(f)
filenames = set(map_data["weight_map"].values())
# Save the pytorch_model.bin.index.json of a sharded model
shutil.move(
os.path.realpath(utils.from_pretrained_index_filename),
os.path.join(
self.get_local_model_path(ignore_existance=True),
transformers.modeling_utils.WEIGHTS_INDEX_NAME,
),
)
# Then save the pytorch_model-#####-of-#####.bin files
for filename in filenames:
shutil.move(
os.path.realpath(
huggingface_hub.hf_hub_download(
self.model_name,
filename,
revision=utils.koboldai_vars.revision,
cache_dir="cache",
local_files_only=True,
legacy_cache_layout=False,
)
),
os.path.join(
self.get_local_model_path(ignore_existance=True),
filename,
),
)
shutil.rmtree("cache/")
self.patch_embedding()
self.model.kai_model = self
utils.koboldai_vars.modeldim = self.get_hidden_size()
def _save_settings(self):
with open(
"settings/{}.hf_bigdl.model_backend.settings".format(
self.model_name.replace("/", "_")
),
"w",
) as f:
json.dump(
{
"layers": self.layers if "layers" in vars(self) else [],
"disk_layers": self.disk_layers
if "disk_layers" in vars(self)
else 0,
},
f,
indent="",
)

View File

@@ -4,7 +4,6 @@ import contextlib
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
from .hijacks import ipex_hijacks
from .attention import attention_init
# pylint: disable=protected-access, missing-function-docstring, line-too-long
@@ -157,15 +156,9 @@ def ipex_init(): # pylint: disable=too-many-statements
torch.cuda.get_device_properties.minor = 7
torch.cuda.ipc_collect = lambda *args, **kwargs: None
torch.cuda.utilization = lambda *args, **kwargs: 0
if hasattr(torch.xpu, 'getDeviceIdListForCard'):
torch.cuda.getDeviceIdListForCard = torch.xpu.getDeviceIdListForCard
torch.cuda.get_device_id_list_per_card = torch.xpu.getDeviceIdListForCard
else:
torch.cuda.getDeviceIdListForCard = torch.xpu.get_device_id_list_per_card
torch.cuda.get_device_id_list_per_card = torch.xpu.get_device_id_list_per_card
ipex_hijacks()
attention_init()
if not torch.xpu.has_fp64_dtype():
try:
from .diffusers import ipex_diffusers
ipex_diffusers()

View File

@@ -4,10 +4,7 @@ import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unuse
# pylint: disable=protected-access, missing-function-docstring, line-too-long
original_torch_bmm = torch.bmm
def torch_bmm(input, mat2, *, out=None):
if input.dtype != mat2.dtype:
mat2 = mat2.to(input.dtype)
def torch_bmm_32_bit(input, mat2, *, out=None):
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
batch_size_attention, input_tokens, mat2_shape = input.shape[0], input.shape[1], mat2.shape[2]
block_multiply = input.element_size()
@@ -64,7 +61,7 @@ def torch_bmm(input, mat2, *, out=None):
return hidden_states
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
# ARC GPUs can't allocate more than 4GB to a single block, Slice it:
if len(query.shape) == 3:
batch_size_attention, query_tokens, shape_four = query.shape
@@ -74,11 +71,6 @@ def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.
shape_one, batch_size_attention, query_tokens, shape_four = query.shape
no_shape_one = False
if query.dtype != key.dtype:
key = key.to(dtype=query.dtype)
if query.dtype != value.dtype:
value = value.to(dtype=query.dtype)
block_multiply = query.element_size()
slice_block_size = shape_one * query_tokens * shape_four / 1024 / 1024 * block_multiply
block_size = batch_size_attention * slice_block_size
@@ -155,8 +147,3 @@ def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.
query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal
)
return hidden_states
def attention_init():
#ARC GPUs can't allocate more than 4GB to a single block:
torch.bmm = torch_bmm
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention

View File

@@ -1,6 +1,6 @@
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
import diffusers #0.21.1 # pylint: disable=import-error
import diffusers #0.24.0 # pylint: disable=import-error
from diffusers.models.attention_processor import Attention
# pylint: disable=protected-access, missing-function-docstring, line-too-long

View File

@@ -5,6 +5,7 @@ import intel_extension_for_pytorch._C as core # pylint: disable=import-error, un
# pylint: disable=protected-access, missing-function-docstring, line-too-long
device_supports_fp64 = torch.xpu.has_fp64_dtype()
OptState = ipex.cpu.autocast._grad_scaler.OptState
_MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator
_refresh_per_optimizer_state = ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state
@@ -96,6 +97,9 @@ def unscale_(self, optimizer):
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
assert self._scale is not None
if device_supports_fp64:
inv_scale = self._scale.double().reciprocal().float()
else:
inv_scale = self._scale.to("cpu").double().reciprocal().float().to(self._scale.device)
found_inf = torch.full(
(1,), 0.0, dtype=torch.float32, device=self._scale.device

View File

@@ -120,6 +120,32 @@ def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
else:
return original_linalg_solve(A, B, *args, **kwargs)
if torch.xpu.has_fp64_dtype():
original_torch_bmm = torch.bmm
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
else:
# 64 bit attention workarounds for Alchemist:
try:
from .attention import torch_bmm_32_bit as original_torch_bmm
from .attention import scaled_dot_product_attention_32_bit as original_scaled_dot_product_attention
except Exception: # pylint: disable=broad-exception-caught
original_torch_bmm = torch.bmm
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
# dtype errors:
def torch_bmm(input, mat2, *, out=None):
if input.dtype != mat2.dtype:
mat2 = mat2.to(input.dtype)
return original_torch_bmm(input, mat2, out=out)
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False):
if query.dtype != key.dtype:
key = key.to(dtype=query.dtype)
if query.dtype != value.dtype:
value = value.to(dtype=query.dtype)
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal)
@property
def is_cuda(self):
return self.device.type == 'xpu'
@@ -158,7 +184,7 @@ def ipex_hijacks():
lambda orig_func, f, map_location=None, pickle_module=None, *, weights_only=False, mmap=None, **kwargs:
orig_func(orig_func, f, map_location=return_xpu(map_location), pickle_module=pickle_module, weights_only=weights_only, mmap=mmap, **kwargs),
lambda orig_func, f, map_location=None, pickle_module=None, *, weights_only=False, mmap=None, **kwargs: check_device(map_location))
if hasattr(torch.xpu, "Generator"):
CondFunc('torch.Generator',
lambda orig_func, device=None: torch.xpu.Generator(return_xpu(device)),
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu")
@@ -197,7 +223,7 @@ def ipex_hijacks():
lambda orig_func, input, pad, mode='constant', value=None: orig_func(input.to(torch.float32), pad, mode=mode, value=value).to(dtype=torch.bfloat16),
lambda orig_func, input, pad, mode='constant', value=None: mode == 'reflect' and input.dtype == torch.bfloat16)
#Diffusers Float64 (ARC GPUs doesn't support double or Float64):
# Diffusers Float64 (Alchemist GPUs doesn't support 64 bit):
if not torch.xpu.has_fp64_dtype():
CondFunc('torch.from_numpy',
lambda orig_func, ndarray: orig_func(ndarray.astype('float32')),
@@ -210,11 +236,16 @@ def ipex_hijacks():
lambda orig_func, *args, **kwargs: True)
# Functions that make compile mad with CondFunc:
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers
torch.nn.DataParallel = DummyDataParallel
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers
torch.autocast = ipex_autocast
torch.cat = torch_cat
torch.linalg.solve = linalg_solve
torch.UntypedStorage.is_cuda = is_cuda
torch.nn.functional.interpolate = interpolate
torch.backends.cuda.sdp_kernel = return_null_context
torch.UntypedStorage.is_cuda = is_cuda
torch.nn.functional.interpolate = interpolate
torch.linalg.solve = linalg_solve
torch.bmm = torch_bmm
torch.cat = torch_cat
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention

View File

@@ -15,7 +15,6 @@ then
source $ONEAPI_ROOT/setvars.sh
fi
export LD_PRELOAD=/usr/lib/libstdc++.so
export NEOReadDebugKeys=1
export ClDeviceGlobalMemSizeAvailablePercent=100