diff --git a/aiserver.py b/aiserver.py index 7e21dfe9..ff28db74 100644 --- a/aiserver.py +++ b/aiserver.py @@ -1635,6 +1635,10 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go if(os.path.isdir(vars.custmodpth)): try: tokenizer = AutoTokenizer.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache") + except Exception as e: + pass + try: + tokenizer = AutoTokenizer.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache", use_fast=False) except Exception as e: try: tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache") @@ -1647,6 +1651,10 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go elif(os.path.isdir("models/{}".format(vars.model.replace('/', '_')))): try: tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache") + except Exception as e: + pass + try: + tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache", use_fast=False) except Exception as e: try: tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache") @@ -1672,6 +1680,10 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go try: tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache") + except Exception as e: + pass + try: + tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache", use_fast=False) except Exception as e: try: tokenizer = GPT2TokenizerFast.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache") @@ -1708,9 +1720,6 @@ if(not vars.use_colab_tpu and vars.model not in ["InferKit", "Colab", "OAI", "Go # Then save the pytorch_model-#####-of-#####.bin files for filename in filenames: shutil.move(transformers.file_utils.get_from_cache(transformers.file_utils.hf_bucket_url(vars.model, filename, revision=vars.revision), cache_dir="cache", local_files_only=True), os.path.join("models/{}".format(vars.model.replace('/', '_')), filename)) - # If the model has a tokenizer_config.json, preserve the original file instead of using the one output by tokenizer.save_pretrained (using the file output by tokenizer.save_pretrained can break OPT-350M in transformers 4.20.0) - if(os.path.isfile(os.path.join("models/{}".format(vars.model.replace('/', '_')), "tokenizer_config.json"))): - shutil.move(transformers.file_utils.get_from_cache(transformers.file_utils.hf_bucket_url(vars.model, "tokenizer_config.json", revision=vars.revision), cache_dir="cache", local_files_only=True), os.path.join("models/{}".format(vars.model.replace('/', '_')), "tokenizer_config.json")) shutil.rmtree("cache/") if(vars.hascuda): diff --git a/tpu_mtj_backend.py b/tpu_mtj_backend.py index 67e006d6..bc228998 100644 --- a/tpu_mtj_backend.py +++ b/tpu_mtj_backend.py @@ -1324,6 +1324,10 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo if(os.path.isdir(vars.custmodpth)): try: tokenizer = AutoTokenizer.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache") + except Exception as e: + pass + try: + tokenizer = AutoTokenizer.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache", use_fast=False) except Exception as e: try: tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache") @@ -1336,6 +1340,10 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo elif(os.path.isdir("models/{}".format(vars.model.replace('/', '_')))): try: tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache") + except Exception as e: + pass + try: + tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache", use_fast=False) except Exception as e: try: tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache") @@ -1348,6 +1356,10 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo else: try: tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache") + except Exception as e: + pass + try: + tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache", use_fast=False) except Exception as e: try: tokenizer = GPT2TokenizerFast.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache")