Merge pull request #5 from 0cc4m/cpu-offload-1

CPU Offloading Support
This commit is contained in:
0cc4m
2023-04-03 06:52:48 +02:00
committed by GitHub
3 changed files with 29 additions and 9 deletions

View File

@@ -96,6 +96,7 @@ from gptj import load_quant as gptj_load_quant
from gptneox import load_quant as gptneox_load_quant
from llama import load_quant as llama_load_quant
from opt import load_quant as opt_load_quant
from offload import load_quant_offload
monkey_patched_4bit = False
@@ -3138,6 +3139,13 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
lowmem = {}
koboldai_vars.lazy_load = False # Also, lazy loader doesn't support GPT-2 models
gpu_layers_list = [int(l) for l in gpu_layers.split(",")]
offload_4bit = use_4_bit and sum(gpu_layers_list) < utils.num_layers(model_config)
if offload_4bit:
koboldai_vars.lazy_load = False
print("4-bit CPU offloader active")
# If we're using torch_lazy_loader, we need to get breakmodel config
# early so that it knows where to load the individual model tensors
if (utils.HAS_ACCELERATE or koboldai_vars.lazy_load and koboldai_vars.hascuda and koboldai_vars.breakmodel) and not koboldai_vars.nobreakmodel:
@@ -3169,16 +3177,28 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
print(f"Trying to load {koboldai_vars.model_type} model in 4-bit")
if koboldai_vars.model_type == "gptj":
model = gptj_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
if offload_4bit:
model = load_quant_offload(gptj_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
else:
model = gptj_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth)
elif koboldai_vars.model_type == "gpt_neox":
model = gptneox_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
if offload_4bit:
model = load_quant_offload(gptneox_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
else:
model = gptneox_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth)
elif koboldai_vars.model_type == "llama":
model = llama_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
if offload_4bit:
model = load_quant_offload(llama_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
else:
model = llama_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
tokenizer = LlamaTokenizer.from_pretrained(koboldai_vars.custmodpth)
elif koboldai_vars.model_type == "opt":
model = opt_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
if offload_4bit:
model = load_quant_offload(opt_load_quant, koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
else:
model = opt_load_quant(koboldai_vars.custmodpth, path_4bit, 4, groupsize)
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth)
else:
raise RuntimeError(f"4-bit load failed. Model type {koboldai_vars.model_type} not supported in 4-bit")
@@ -3286,7 +3306,10 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
patch_causallm(model)
if(koboldai_vars.hascuda):
if(koboldai_vars.usegpu):
if offload_4bit:
koboldai_vars.modeldim = get_hidden_size_from_model(model)
generator = model.generate
elif(koboldai_vars.usegpu):
koboldai_vars.modeldim = get_hidden_size_from_model(model)
if not use_4_bit:
model = model.half().to(koboldai_vars.gpu_device)

View File

@@ -11,9 +11,6 @@ dependencies:
- pytorch=1.11.*
- python=3.8.*
- cudatoolkit=11.1
- cudatoolkit-dev=11.1
- gcc=9.*
- gxx=9.*
- eventlet=0.33.3
- dnspython=2.2.1
- markdown