Merge pull request #386 from one-some/accelerate-offloading

Use VE's patched load_from_state_dict on TPU for loading empty weights
This commit is contained in:
henk717
2023-07-06 14:54:54 +02:00
committed by GitHub
2 changed files with 104 additions and 6 deletions

View File

@@ -56,7 +56,6 @@ import collections
import _codecs
import os
from typing import Any, Callable, Dict, Optional, Tuple, Type
import accelerate
from torch.nn import Module
from torch.storage import UntypedStorage
@@ -70,6 +69,12 @@ try:
except ModuleNotFoundError:
HAS_SAFETENSORS = False
try:
import accelerate
USE_TPU_EMPTY_MODULE_METHOD = False
except ModuleNotFoundError:
USE_TPU_EMPTY_MODULE_METHOD = True
import utils
from logger import logger
@@ -400,6 +405,72 @@ def use_custom_unpickler(unpickler: Type[pickle.Unpickler] = RestrictedUnpickler
pickle.Unpickler = old_unpickler
pickle.load = old_pickle_load
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
for hook in self._load_state_dict_pre_hooks.values():
hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
persistent_buffers = {k: v for k, v in self._buffers.items() if k not in self._non_persistent_buffers_set}
local_name_params = itertools.chain(self._parameters.items(), persistent_buffers.items())
local_state = {k: v for k, v in local_name_params if v is not None}
for name, param in local_state.items():
key = prefix + name
if key in state_dict:
input_param = state_dict[key]
if not torch.overrides.is_tensor_like(input_param):
error_msgs.append('While copying the parameter named "{}", '
'expected torch.Tensor or Tensor-like object from checkpoint but '
'received {}'
.format(key, type(input_param)))
continue
# This is used to avoid copying uninitialized parameters into
# non-lazy modules, since they dont have the hook to do the checks
# in such case, it will error when accessing the .shape attribute.
is_param_lazy = torch.nn.parameter.is_lazy(param)
# Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+
if not is_param_lazy and len(param.shape) == 0 and len(input_param.shape) == 1:
input_param = input_param[0]
if not is_param_lazy and input_param.shape != param.shape:
# local shape should match the one in checkpoint
error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, '
'the shape in current model is {}.'
.format(key, input_param.shape, param.shape))
continue
try:
with torch.no_grad():
#param.copy_(input_param)
new_param = torch.nn.Parameter(input_param, requires_grad=param.requires_grad) # This line is new
if name in self._parameters: # This line is new
self._parameters[name] = new_param # This line is new
if name in persistent_buffers: # This line is new
self._buffers[name] = new_param # This line is new
except Exception as ex:
error_msgs.append('While copying the parameter named "{}", '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}, '
'an exception occurred : {}.'
.format(key, param.size(), input_param.size(), ex.args))
elif strict:
missing_keys.append(key)
extra_state_key = prefix + "_extra_state"
if hasattr(Module, "set_extra_state") and getattr(self.__class__, "set_extra_state", Module.set_extra_state) is not Module.set_extra_state: # if getattr(self.__class__, "set_extra_state", Module.set_extra_state) is not Module.set_extra_state:
if extra_state_key in state_dict:
self.set_extra_state(state_dict[extra_state_key])
elif strict:
missing_keys.append(extra_state_key)
elif strict and (extra_state_key in state_dict):
unexpected_keys.append(extra_state_key)
if strict:
for key in state_dict.keys():
if key.startswith(prefix) and key != extra_state_key:
input_name = key[len(prefix):]
input_name = input_name.split('.', 1)[0] # get the name of param/buffer/child
if input_name not in self._modules and input_name not in local_state:
unexpected_keys.append(key)
@contextlib.contextmanager
def use_lazy_load(
@@ -453,8 +524,30 @@ def use_lazy_load(
patch_safetensors(callback)
if dematerialized_modules:
init_empty_weights = accelerate.init_empty_weights()
init_empty_weights.__enter__()
# Most devices can just use Accelerate's implementation, but the Transformers on
# the TPU complains about emptied weights unless we use VE's custom patches
if not USE_TPU_EMPTY_MODULE_METHOD:
init_empty_weights = accelerate.init_empty_weights()
init_empty_weights.__enter__()
else:
old_linear_init = torch.nn.Linear.__init__
old_embedding_init = torch.nn.Embedding.__init__
old_layernorm_init = torch.nn.LayerNorm.__init__
def linear_init(self, *args, device=None, **kwargs):
return old_linear_init(self, *args, device="meta", **kwargs)
def embedding_init(self, *args, device=None, **kwargs):
return old_embedding_init(self, *args, device="meta", **kwargs)
def layernorm_init(self, *args, device=None, **kwargs):
return old_layernorm_init(self, *args, device="meta", **kwargs)
torch.nn.Linear.__init__ = linear_init
torch.nn.Embedding.__init__ = embedding_init
torch.nn.LayerNorm.__init__ = layernorm_init
old_load_from_state_dict = torch.nn.Module._load_from_state_dict
torch.nn.Module._load_from_state_dict = _load_from_state_dict
with use_custom_unpickler(_LazyUnpickler):
yield True
@@ -469,7 +562,13 @@ def use_lazy_load(
)
if dematerialized_modules:
init_empty_weights.__exit__(None, None, None)
if not USE_TPU_EMPTY_MODULE_METHOD:
init_empty_weights.__exit__(None, None, None)
else:
torch.nn.Linear.__init__ = old_linear_init
torch.nn.Embedding.__init__ = old_embedding_init
torch.nn.LayerNorm.__init__ = old_layernorm_init
torch.nn.Module._load_from_state_dict = old_load_from_state_dict
def post_load_cleanup() -> None:

View File

@@ -34,4 +34,3 @@ ijson
ftfy
pydub
sentencepiece
accelerate==0.18.0