Fix error in aria2_hook when transformers version is at least 4.22.0
Some of the transformers.file_utils functions that were removed in transformers v4.22.0 have equivalents in the huggingface_hub module.
This commit is contained in:
parent
aac999c073
commit
551565c5ac
|
@ -1,4 +1,4 @@
|
|||
transformers==4.21.3
|
||||
transformers>=4.20.1
|
||||
Flask
|
||||
Flask-SocketIO
|
||||
requests
|
||||
|
@ -11,4 +11,4 @@ markdown
|
|||
bleach==4.1.0
|
||||
sentencepiece
|
||||
protobuf
|
||||
accelerate
|
||||
accelerate
|
||||
|
|
|
@ -6,7 +6,7 @@ optax >= 0.0.5, <= 0.0.9
|
|||
dm-haiku == 0.0.5
|
||||
jax == 0.2.21
|
||||
jaxlib >= 0.1.69, <= 0.3.7
|
||||
transformers == 4.21.3
|
||||
transformers >= 4.20.1
|
||||
progressbar2
|
||||
git+https://github.com/VE-FORBRYDERNE/mesh-transformer-jax@ck
|
||||
flask
|
||||
|
|
20
utils.py
20
utils.py
|
@ -10,6 +10,8 @@ import time
|
|||
from tqdm.auto import tqdm
|
||||
import os
|
||||
import itertools
|
||||
import hashlib
|
||||
import huggingface_hub
|
||||
from typing import Optional
|
||||
|
||||
vars = None
|
||||
|
@ -159,7 +161,7 @@ def num_layers(config):
|
|||
#==================================================================#
|
||||
# Downloads huggingface checkpoints using aria2c if possible
|
||||
#==================================================================#
|
||||
def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, mirror=None, **kwargs):
|
||||
def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_dir=None, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs):
|
||||
import transformers
|
||||
import transformers.modeling_utils
|
||||
from huggingface_hub import HfFolder
|
||||
|
@ -186,8 +188,8 @@ def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_d
|
|||
headers["authorization"] = f"Bearer {use_auth_token}"
|
||||
def is_cached(url):
|
||||
try:
|
||||
transformers.file_utils.get_from_cache(url, cache_dir=cache_dir, local_files_only=True)
|
||||
except (FileNotFoundError, transformers.file_utils.EntryNotFoundError):
|
||||
huggingface_hub.cached_download(url, cache_dir=cache_dir, local_files_only=True)
|
||||
except ValueError:
|
||||
return False
|
||||
return True
|
||||
while True: # Try to get the huggingface.co URL of the model's pytorch_model.bin or pytorch_model.bin.index.json file
|
||||
|
@ -195,7 +197,7 @@ def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_d
|
|||
filename = transformers.modeling_utils.WEIGHTS_INDEX_NAME if sharded else transformers.modeling_utils.WEIGHTS_NAME
|
||||
except AttributeError:
|
||||
return
|
||||
url = transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, filename, revision=revision, mirror=mirror)
|
||||
url = huggingface_hub.hf_hub_url(pretrained_model_name_or_path, filename, revision=revision)
|
||||
if is_cached(url) or requests.head(url, allow_redirects=True, proxies=proxies, headers=headers):
|
||||
break
|
||||
if sharded:
|
||||
|
@ -205,18 +207,18 @@ def aria2_hook(pretrained_model_name_or_path: str, force_download=False, cache_d
|
|||
if not sharded: # If the model has a pytorch_model.bin file, that's the only file to download
|
||||
filenames = [transformers.modeling_utils.WEIGHTS_NAME]
|
||||
else: # Otherwise download the pytorch_model.bin.index.json and then let aria2 download all the pytorch_model-#####-of-#####.bin files mentioned inside it
|
||||
map_filename = transformers.file_utils.cached_path(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent)
|
||||
map_filename = huggingface_hub.cached_download(url, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, use_auth_token=use_auth_token, user_agent=user_agent)
|
||||
with open(map_filename) as f:
|
||||
map_data = json.load(f)
|
||||
filenames = set(map_data["weight_map"].values())
|
||||
urls = [transformers.file_utils.hf_bucket_url(pretrained_model_name_or_path, n, revision=revision, mirror=mirror) for n in filenames]
|
||||
urls = [huggingface_hub.hf_hub_url(pretrained_model_name_or_path, n, revision=revision) for n in filenames]
|
||||
if not force_download:
|
||||
urls = [u for u in urls if not is_cached(u)]
|
||||
if not urls:
|
||||
return
|
||||
etags = [h.get("X-Linked-Etag") or h.get("ETag") for u in urls for h in [requests.head(u, headers=headers, allow_redirects=False, proxies=proxies, timeout=10).headers]]
|
||||
headers = [requests.head(u, headers=headers, allow_redirects=True, proxies=proxies, timeout=10).headers for u in urls]
|
||||
filenames = [transformers.file_utils.url_to_filename(u, t) for u, t in zip(urls, etags)]
|
||||
filenames = [hashlib.sha256(u.encode("utf-8")).hexdigest() + "." + hashlib.sha256(t.encode("utf-8")).hexdigest() for u, t in zip(urls, etags)]
|
||||
for n in filenames:
|
||||
path = os.path.join(_cache_dir, "kai-tempfile." + n + ".aria2")
|
||||
if os.path.exists(path):
|
||||
|
@ -298,8 +300,8 @@ def get_num_shards(filename):
|
|||
# pytorch_model.bin.index.json, returns a list of weight names in the
|
||||
# sharded model. Requires lazy loader to be enabled to work properl
|
||||
#==================================================================#
|
||||
def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, mirror=None, **kwargs):
|
||||
def get_sharded_checkpoint_num_tensors(pretrained_model_name_or_path, filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, use_auth_token=None, user_agent=None, revision=None, **kwargs):
|
||||
import transformers.modeling_utils
|
||||
import torch
|
||||
shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision, mirror=mirror)
|
||||
shard_paths, _ = transformers.modeling_utils.get_checkpoint_shard_files(pretrained_model_name_or_path, filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, revision=revision)
|
||||
return list(itertools.chain(*(torch.load(p, map_location="cpu").keys() for p in shard_paths)))
|
||||
|
|
Loading…
Reference in New Issue