mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2024-12-12 08:36:28 +01:00
Merge branch 'united' into mkultra
This commit is contained in:
commit
51135e192b
35
aiserver.py
35
aiserver.py
@ -964,7 +964,10 @@ def loadmodelsettings():
|
|||||||
if("nobreakmodel" in js):
|
if("nobreakmodel" in js):
|
||||||
vars.nobreakmodel = js["nobreakmodel"]
|
vars.nobreakmodel = js["nobreakmodel"]
|
||||||
if("sampler_order" in js):
|
if("sampler_order" in js):
|
||||||
vars.sampler_order = js["sampler_order"]
|
sampler_order = vars.sampler_order
|
||||||
|
if(len(sampler_order) < 7):
|
||||||
|
sampler_order = [6] + sampler_order
|
||||||
|
vars.sampler_order = sampler_order
|
||||||
if("temp" in js):
|
if("temp" in js):
|
||||||
vars.temp = js["temp"]
|
vars.temp = js["temp"]
|
||||||
if("top_p" in js):
|
if("top_p" in js):
|
||||||
@ -1095,7 +1098,10 @@ def processsettings(js):
|
|||||||
if("andepth" in js):
|
if("andepth" in js):
|
||||||
vars.andepth = js["andepth"]
|
vars.andepth = js["andepth"]
|
||||||
if("sampler_order" in js):
|
if("sampler_order" in js):
|
||||||
vars.sampler_order = js["sampler_order"]
|
sampler_order = vars.sampler_order
|
||||||
|
if(len(sampler_order) < 7):
|
||||||
|
sampler_order = [6] + sampler_order
|
||||||
|
vars.sampler_order = sampler_order
|
||||||
if("temp" in js):
|
if("temp" in js):
|
||||||
vars.temp = js["temp"]
|
vars.temp = js["temp"]
|
||||||
if("top_p" in js):
|
if("top_p" in js):
|
||||||
@ -1732,8 +1738,6 @@ def patch_transformers():
|
|||||||
dynamic_processor_wrap(TailFreeLogitsWarper, "tfs", "tfs", cond=lambda x: x < 1.0)
|
dynamic_processor_wrap(TailFreeLogitsWarper, "tfs", "tfs", cond=lambda x: x < 1.0)
|
||||||
dynamic_processor_wrap(TypicalLogitsWarper, "typical", "typical", cond=lambda x: x < 1.0)
|
dynamic_processor_wrap(TypicalLogitsWarper, "typical", "typical", cond=lambda x: x < 1.0)
|
||||||
dynamic_processor_wrap(TemperatureLogitsWarper, "temperature", "temp", cond=lambda x: x != 1.0)
|
dynamic_processor_wrap(TemperatureLogitsWarper, "temperature", "temp", cond=lambda x: x != 1.0)
|
||||||
RepetitionPenaltyLogitsProcessor.__init__ = AdvancedRepetitionPenaltyLogitsProcessor.__init__
|
|
||||||
RepetitionPenaltyLogitsProcessor.__call__ = AdvancedRepetitionPenaltyLogitsProcessor.__call__
|
|
||||||
|
|
||||||
class LuaLogitsProcessor(LogitsProcessor):
|
class LuaLogitsProcessor(LogitsProcessor):
|
||||||
|
|
||||||
@ -1810,9 +1814,13 @@ def patch_transformers():
|
|||||||
self.__warper_list.append(TailFreeLogitsWarper(tfs=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
self.__warper_list.append(TailFreeLogitsWarper(tfs=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||||
self.__warper_list.append(TypicalLogitsWarper(typical=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
self.__warper_list.append(TypicalLogitsWarper(typical=0.5, min_tokens_to_keep=1 + (beams > 1)))
|
||||||
self.__warper_list.append(TemperatureLogitsWarper(temperature=0.5))
|
self.__warper_list.append(TemperatureLogitsWarper(temperature=0.5))
|
||||||
|
self.__warper_list.append(AdvancedRepetitionPenaltyLogitsProcessor())
|
||||||
|
|
||||||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, *args, **kwargs):
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, *args, **kwargs):
|
||||||
for k in vars.sampler_order:
|
sampler_order = vars.sampler_order[:]
|
||||||
|
if len(sampler_order) < 7: # Add repetition penalty at beginning if it's not present
|
||||||
|
sampler_order = [6] + sampler_order
|
||||||
|
for k in sampler_order:
|
||||||
scores = self.__warper_list[k](input_ids, scores, *args, **kwargs)
|
scores = self.__warper_list[k](input_ids, scores, *args, **kwargs)
|
||||||
return scores
|
return scores
|
||||||
|
|
||||||
@ -1945,7 +1953,7 @@ def reset_model_settings():
|
|||||||
vars.badwordsids = []
|
vars.badwordsids = []
|
||||||
vars.fp32_model = False # Whether or not the most recently loaded HF model was in fp32 format
|
vars.fp32_model = False # Whether or not the most recently loaded HF model was in fp32 format
|
||||||
vars.modeldim = -1 # Embedding dimension of your model (e.g. it's 4096 for GPT-J-6B and 2560 for GPT-Neo-2.7B)
|
vars.modeldim = -1 # Embedding dimension of your model (e.g. it's 4096 for GPT-J-6B and 2560 for GPT-Neo-2.7B)
|
||||||
vars.sampler_order = [0, 1, 2, 3, 4, 5]
|
vars.sampler_order = [6, 0, 1, 2, 3, 4, 5]
|
||||||
vars.newlinemode = "n"
|
vars.newlinemode = "n"
|
||||||
vars.revision = None
|
vars.revision = None
|
||||||
|
|
||||||
@ -2558,8 +2566,11 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
|||||||
vars.compiling = False
|
vars.compiling = False
|
||||||
|
|
||||||
def tpumtjgenerate_settings_callback() -> dict:
|
def tpumtjgenerate_settings_callback() -> dict:
|
||||||
|
sampler_order = vars.sampler_order[:]
|
||||||
|
if len(sampler_order) < 7: # Add repetition penalty at beginning if it's not present
|
||||||
|
sampler_order = [6] + sampler_order
|
||||||
return {
|
return {
|
||||||
"sampler_order": vars.sampler_order,
|
"sampler_order": sampler_order,
|
||||||
"top_p": float(vars.top_p),
|
"top_p": float(vars.top_p),
|
||||||
"temp": float(vars.temp),
|
"temp": float(vars.temp),
|
||||||
"top_k": int(vars.top_k),
|
"top_k": int(vars.top_k),
|
||||||
@ -3666,12 +3677,16 @@ def get_message(msg):
|
|||||||
sendUSStatItems()
|
sendUSStatItems()
|
||||||
elif(msg['cmd'] == 'samplers'):
|
elif(msg['cmd'] == 'samplers'):
|
||||||
sampler_order = msg["data"]
|
sampler_order = msg["data"]
|
||||||
|
sampler_order_min_length = 6
|
||||||
|
sampler_order_max_length = 7
|
||||||
if(not isinstance(sampler_order, list)):
|
if(not isinstance(sampler_order, list)):
|
||||||
raise ValueError(f"Sampler order must be a list, but got a {type(sampler_order)}")
|
raise ValueError(f"Sampler order must be a list, but got a {type(sampler_order)}")
|
||||||
if(len(sampler_order) != len(vars.sampler_order)):
|
if(not (sampler_order_min_length <= len(sampler_order) <= sampler_order_max_length)):
|
||||||
raise ValueError(f"Sampler order must be a list of length {len(vars.sampler_order)}, but got a list of length {len(sampler_order)}")
|
raise ValueError(f"Sampler order must be a list of length greater than or equal to {sampler_order_min_length} and less than or equal to {sampler_order_max_length}, but got a list of length {len(sampler_order)}")
|
||||||
if(not all(isinstance(e, int) for e in sampler_order)):
|
if(not all(isinstance(e, int) for e in sampler_order)):
|
||||||
raise ValueError(f"Sampler order must be a list of ints, but got a list with at least one non-int element")
|
raise ValueError(f"Sampler order must be a list of ints, but got a list with at least one non-int element")
|
||||||
|
if(min(sampler_order) != 0 or max(sampler_order) != len(sampler_order) - 1 or len(set(sampler_order)) != len(sampler_order)):
|
||||||
|
raise ValueError(f"Sampler order list of length {len(sampler_order)} must be a permutation of the first {len(sampler_order)} nonnegative integers")
|
||||||
vars.sampler_order = sampler_order
|
vars.sampler_order = sampler_order
|
||||||
settingschanged()
|
settingschanged()
|
||||||
elif(msg['cmd'] == 'list_model'):
|
elif(msg['cmd'] == 'list_model'):
|
||||||
@ -4624,7 +4639,7 @@ def _generate(txt, minimum, maximum, found_entries):
|
|||||||
gen_in,
|
gen_in,
|
||||||
do_sample=True,
|
do_sample=True,
|
||||||
max_length=int(2e9),
|
max_length=int(2e9),
|
||||||
repetition_penalty=1.1,
|
repetition_penalty=1.0,
|
||||||
bad_words_ids=vars.badwordsids,
|
bad_words_ids=vars.badwordsids,
|
||||||
use_cache=True,
|
use_cache=True,
|
||||||
num_return_sequences=numseqs
|
num_return_sequences=numseqs
|
||||||
|
@ -256,7 +256,7 @@ function addSetting(ob) {
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
if (!$("#input-token-usage")[0].checked) {
|
if (!$("#setshowbudget")[0].checked) {
|
||||||
for (const el of document.getElementsByClassName("input-token-usage")) {
|
for (const el of document.getElementsByClassName("input-token-usage")) {
|
||||||
el.classList.add("hidden");
|
el.classList.add("hidden");
|
||||||
}
|
}
|
||||||
@ -1306,12 +1306,13 @@ function buildSamplerList(samplers) {
|
|||||||
"Tail-free Sampling",
|
"Tail-free Sampling",
|
||||||
"Typical Sampling",
|
"Typical Sampling",
|
||||||
"Temperature",
|
"Temperature",
|
||||||
|
"Repetition Penalty",
|
||||||
]
|
]
|
||||||
for(i=0; i<samplers.length; i++) {
|
for(i=0; i<samplers.length; i++) {
|
||||||
samplerslist.append("<div class=\"flex\">\
|
samplerslist.append("<div class=\"flex\">\
|
||||||
<div class=\"samplerslistitem flex-row-container\" sid=\""+samplers[i]+"\">\
|
<div class=\"samplerslistitem flex-row-container\" sid=\""+samplers[i]+"\">\
|
||||||
<div class=\"flex-row\">\
|
<div class=\"flex-row\">\
|
||||||
<div>"+samplers_lookup_table[samplers[i]]+"</div>\
|
<div>"+(samplers[i] < samplers_lookup_table.length ? samplers_lookup_table[samplers[i]] : "Unknown sampler #" + samplers[i])+"</div>\
|
||||||
</div>\
|
</div>\
|
||||||
</div>\
|
</div>\
|
||||||
</div>");
|
</div>");
|
||||||
|
@ -473,7 +473,7 @@ body.connected #popupfooter, #popupfooter.always-available {
|
|||||||
}
|
}
|
||||||
|
|
||||||
#samplerslist {
|
#samplerslist {
|
||||||
height: 300px;
|
height: 310px;
|
||||||
overflow-y: scroll;
|
overflow-y: scroll;
|
||||||
overflow-wrap: anywhere;
|
overflow-wrap: anywhere;
|
||||||
}
|
}
|
||||||
|
@ -176,7 +176,7 @@ def apply_repetition_penalty_dynamic(logits, tokens, repetition_penalty, generat
|
|||||||
logits[tokens] = penalty_logits
|
logits[tokens] = penalty_logits
|
||||||
return logits
|
return logits
|
||||||
|
|
||||||
def kobold_sample_dynamic(key, logits, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
def kobold_sample_dynamic(key, logits, rpargs, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
||||||
'''
|
'''
|
||||||
This gets called by generate_loop_fn to apply a series of 6 filters
|
This gets called by generate_loop_fn to apply a series of 6 filters
|
||||||
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
||||||
@ -312,6 +312,7 @@ def kobold_sample_dynamic(key, logits, sampler_order: Optional[np.ndarray] = Non
|
|||||||
if k == 3 and tfs < 1.0: logits = tail_free_filter(logits)
|
if k == 3 and tfs < 1.0: logits = tail_free_filter(logits)
|
||||||
if k == 4 and typical < 1.0: logits = typical_filter(logits)
|
if k == 4 and typical < 1.0: logits = typical_filter(logits)
|
||||||
if k == 5 and temp != 1.0: logits = temp_filter(logits)
|
if k == 5 and temp != 1.0: logits = temp_filter(logits)
|
||||||
|
if k == 6 and rpargs[1] != 1.0: logits = apply_repetition_penalty_dynamic(logits, *rpargs)
|
||||||
# Finally, pick one token using the softmax thingy again (it gives
|
# Finally, pick one token using the softmax thingy again (it gives
|
||||||
# an array whose elements sum to 1 so it can be used nicely as a
|
# an array whose elements sum to 1 so it can be used nicely as a
|
||||||
# probability distribution)
|
# probability distribution)
|
||||||
@ -362,7 +363,7 @@ def apply_repetition_penalty_static(logits, tokens, repetition_penalty, generate
|
|||||||
# positions in the logits array
|
# positions in the logits array
|
||||||
return logits.at[tokens].set(penalty_logits)
|
return logits.at[tokens].set(penalty_logits)
|
||||||
|
|
||||||
def kobold_sample_static(key, logits, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
def kobold_sample_static(key, logits, rpargs, sampler_order: Optional[np.ndarray] = None, top_p=0.9, temp=0.5, top_k=0, tfs=1.0, typical=1.0, top_a=0.0):
|
||||||
'''
|
'''
|
||||||
This gets called by generate_loop_fn to apply a series of 6 filters
|
This gets called by generate_loop_fn to apply a series of 6 filters
|
||||||
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
to the logits (top-k, then top-a, then top-p, then TFS, then typical, then temperature)
|
||||||
@ -497,6 +498,7 @@ def kobold_sample_static(key, logits, sampler_order: Optional[np.ndarray] = None
|
|||||||
logits = jax.lax.cond(jnp.logical_and(k == 3, tfs < 1.0), tail_free_filter, lambda x: x, logits)
|
logits = jax.lax.cond(jnp.logical_and(k == 3, tfs < 1.0), tail_free_filter, lambda x: x, logits)
|
||||||
logits = jax.lax.cond(jnp.logical_and(k == 4, typical < 1.0), typical_filter, lambda x: x, logits)
|
logits = jax.lax.cond(jnp.logical_and(k == 4, typical < 1.0), typical_filter, lambda x: x, logits)
|
||||||
logits = jax.lax.cond(jnp.logical_and(k == 5, temp != 1.0), temp_filter, lambda x: x, logits)
|
logits = jax.lax.cond(jnp.logical_and(k == 5, temp != 1.0), temp_filter, lambda x: x, logits)
|
||||||
|
logits = jax.lax.cond(jnp.logical_and(k == 6, rpargs[1] != 1.0), lambda x: apply_repetition_penalty_static(*x), lambda x: x[0], (logits, *rpargs))
|
||||||
# Finally, pick one token using the softmax thingy again (it gives
|
# Finally, pick one token using the softmax thingy again (it gives
|
||||||
# an array whose elements sum to 1 so it can be used nicely as a
|
# an array whose elements sum to 1 so it can be used nicely as a
|
||||||
# probability distribution)
|
# probability distribution)
|
||||||
@ -513,17 +515,6 @@ def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, generated_
|
|||||||
# Get the pseudo-random number generator key that will
|
# Get the pseudo-random number generator key that will
|
||||||
# be used by kobold_sample_dynamic to randomly pick a token
|
# be used by kobold_sample_dynamic to randomly pick a token
|
||||||
sample_key, new_key = jax.random.split(sample_key, num=2)
|
sample_key, new_key = jax.random.split(sample_key, num=2)
|
||||||
# Apply repetition penalty to all tokens that are
|
|
||||||
# currently inside the "generated" array
|
|
||||||
logits = apply_repetition_penalty_dynamic(
|
|
||||||
logits,
|
|
||||||
generated,
|
|
||||||
repetition_penalty,
|
|
||||||
generated_index,
|
|
||||||
gen_length,
|
|
||||||
rpslope,
|
|
||||||
rprange,
|
|
||||||
)
|
|
||||||
# Remove any tokens in the badwords list by setting
|
# Remove any tokens in the badwords list by setting
|
||||||
# their logits to negative infinity which effectively
|
# their logits to negative infinity which effectively
|
||||||
# makes their probabilities of being chosen zero
|
# makes their probabilities of being chosen zero
|
||||||
@ -535,6 +526,14 @@ def sample_func(data, key, numseqs_aux, badwords, repetition_penalty, generated_
|
|||||||
next_token = kobold_sample_dynamic(
|
next_token = kobold_sample_dynamic(
|
||||||
sample_key,
|
sample_key,
|
||||||
logits,
|
logits,
|
||||||
|
(
|
||||||
|
generated,
|
||||||
|
repetition_penalty,
|
||||||
|
generated_index,
|
||||||
|
gen_length,
|
||||||
|
rpslope,
|
||||||
|
rprange,
|
||||||
|
)
|
||||||
**sampler_options,
|
**sampler_options,
|
||||||
)
|
)
|
||||||
# Remember what token was picked
|
# Remember what token was picked
|
||||||
@ -606,18 +605,6 @@ class PenalizingCausalTransformer(CausalTransformer):
|
|||||||
assert logits.shape == (1, config["n_vocab"])
|
assert logits.shape == (1, config["n_vocab"])
|
||||||
# Flatten it into a 1D array to make it easier to use
|
# Flatten it into a 1D array to make it easier to use
|
||||||
logits = logits[0]
|
logits = logits[0]
|
||||||
# Apply repetition penalty to all tokens that are
|
|
||||||
# currently inside the "generated" array
|
|
||||||
if repetition_penalty is not None:
|
|
||||||
logits = apply_repetition_penalty_static(
|
|
||||||
logits,
|
|
||||||
generated,
|
|
||||||
repetition_penalty,
|
|
||||||
generated_index,
|
|
||||||
gen_length,
|
|
||||||
rpslope,
|
|
||||||
rprange,
|
|
||||||
)
|
|
||||||
# Remove any tokens in the badwords list by setting
|
# Remove any tokens in the badwords list by setting
|
||||||
# their logits to negative infinity which effectively
|
# their logits to negative infinity which effectively
|
||||||
# makes their probabilities of being chosen zero
|
# makes their probabilities of being chosen zero
|
||||||
@ -629,6 +616,14 @@ class PenalizingCausalTransformer(CausalTransformer):
|
|||||||
next_token = kobold_sample_static(
|
next_token = kobold_sample_static(
|
||||||
sample_key,
|
sample_key,
|
||||||
logits,
|
logits,
|
||||||
|
(
|
||||||
|
generated,
|
||||||
|
repetition_penalty,
|
||||||
|
generated_index,
|
||||||
|
gen_length,
|
||||||
|
rpslope,
|
||||||
|
rprange,
|
||||||
|
),
|
||||||
**sampler_options,
|
**sampler_options,
|
||||||
)
|
)
|
||||||
# Remember what token was picked
|
# Remember what token was picked
|
||||||
@ -863,6 +858,9 @@ def infer_static(
|
|||||||
maps.thread_resources.env = thread_resources_env
|
maps.thread_resources.env = thread_resources_env
|
||||||
if sampler_order is None:
|
if sampler_order is None:
|
||||||
sampler_order = utils.default_sampler_order.copy()
|
sampler_order = utils.default_sampler_order.copy()
|
||||||
|
sampler_order = sampler_order[:]
|
||||||
|
if len(sampler_order) < 7: # Add repetition penalty at beginning if it's not present
|
||||||
|
sampler_order = [6] + sampler_order
|
||||||
sampler_order = np.uint32(sampler_order)
|
sampler_order = np.uint32(sampler_order)
|
||||||
total_batch = 1
|
total_batch = 1
|
||||||
tokens = context
|
tokens = context
|
||||||
|
2
utils.py
2
utils.py
@ -34,7 +34,7 @@ layers_module_names: Optional[List[str]] = None
|
|||||||
module_names: Optional[List[str]] = None
|
module_names: Optional[List[str]] = None
|
||||||
named_buffers: Optional[List[tuple]] = None
|
named_buffers: Optional[List[tuple]] = None
|
||||||
|
|
||||||
default_sampler_order = [0, 1, 2, 3, 4, 5]
|
default_sampler_order = [6, 0, 1, 2, 3, 4, 5]
|
||||||
|
|
||||||
emit = None
|
emit = None
|
||||||
|
|
||||||
|
@ -28,10 +28,10 @@ SOFTWARE.
|
|||||||
'''
|
'''
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from transformers import LogitsWarper, LogitsProcessor
|
from transformers import LogitsWarper
|
||||||
|
|
||||||
|
|
||||||
class AdvancedRepetitionPenaltyLogitsProcessor(LogitsProcessor):
|
class AdvancedRepetitionPenaltyLogitsProcessor(LogitsWarper):
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user