mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
Move 4-bit loading code to separate inference_model file
This commit is contained in:
91
aiserver.py
91
aiserver.py
@@ -1778,56 +1778,6 @@ def unload_model():
|
||||
koboldai_vars.badwordsids = koboldai_settings.badwordsids_default
|
||||
|
||||
|
||||
def prepare_4bit_load(modelpath):
|
||||
paths_4bit = ["4bit*.safetensors", "4bit*.pt"]
|
||||
paths_4bit_old = ["4bit-old.pt", "4bit-old.safetensors"]
|
||||
result = False
|
||||
groupsize = -1
|
||||
for p in paths_4bit:
|
||||
p = os.path.join(modelpath, p)
|
||||
val = [v for v in glob.glob(p) if "4bit-old" not in v]
|
||||
if val:
|
||||
result = val[0]
|
||||
fname = Path(result).parts[-1]
|
||||
g = re.findall("^(?:4bit)(?:-)(\d+)(?:g-?)", fname)
|
||||
if g:
|
||||
groupsize = int(g[0])
|
||||
break
|
||||
|
||||
global monkey_patched_4bit
|
||||
|
||||
# Monkey-patch in old-format pt-file support
|
||||
if not result:
|
||||
print("4-bit file not found, falling back to old format.")
|
||||
for p in paths_4bit_old:
|
||||
p = os.path.join(modelpath, p)
|
||||
if os.path.isfile(p):
|
||||
result = p
|
||||
break
|
||||
|
||||
if not result:
|
||||
print("4-bit old-format file not found, loading failed.")
|
||||
raise RuntimeError(f"4-bit load failed. PT-File not found.")
|
||||
|
||||
import llama, opt, gptneox, gptj, old_quant
|
||||
llama.make_quant = old_quant.old_make_quant
|
||||
opt.make_quant = old_quant.old_make_quant
|
||||
gptneox.make_quant = old_quant.old_make_quant
|
||||
gptj.make_quant = old_quant.old_make_quant
|
||||
monkey_patched_4bit = True
|
||||
elif monkey_patched_4bit:
|
||||
# Undo monkey patch
|
||||
print("Undoing 4-bit old format monkey patch")
|
||||
import llama, opt, gptneox, gptj, quant
|
||||
llama.make_quant = quant.make_quant
|
||||
opt.make_quant = quant.make_quant
|
||||
gptneox.make_quant = quant.make_quant
|
||||
gptj.make_quant = quant.make_quant
|
||||
monkey_patched_4bit = False
|
||||
|
||||
return result, groupsize
|
||||
|
||||
|
||||
def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=False, online_model="", use_breakmodel_args=False, breakmodel_args_default_to_cpu=False, url=None, use_8_bit=False, use_4_bit=False):
|
||||
global model
|
||||
global tokenizer
|
||||
@@ -2008,9 +1958,9 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
||||
except:
|
||||
pass
|
||||
|
||||
try:
|
||||
from modeling.inference_models.generic_hf_torch import GenericHFTorchInferenceModel
|
||||
model = GenericHFTorchInferenceModel(
|
||||
if use_4_bit:
|
||||
from modeling.inference_models.hf_torch_4bit import HFTorch4BitInferenceModel
|
||||
model = HFTorch4BitInferenceModel(
|
||||
koboldai_vars.model,
|
||||
lazy_load=koboldai_vars.lazy_load,
|
||||
low_mem=args.lowmem
|
||||
@@ -2020,18 +1970,31 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
|
||||
save_model=not (args.colab or args.cacheonly) or args.savemodel,
|
||||
initial_load=initial_load,
|
||||
)
|
||||
except SuperLegacyModelError:
|
||||
from modeling.inference_models.legacy_gpt2_hf import CustomGPT2HFTorchInferenceModel
|
||||
model = CustomGPT2HFTorchInferenceModel(
|
||||
koboldai_vars.model,
|
||||
lazy_load=koboldai_vars.lazy_load,
|
||||
low_mem=args.lowmem
|
||||
)
|
||||
else:
|
||||
try:
|
||||
from modeling.inference_models.generic_hf_torch import GenericHFTorchInferenceModel
|
||||
model = GenericHFTorchInferenceModel(
|
||||
koboldai_vars.model,
|
||||
lazy_load=koboldai_vars.lazy_load,
|
||||
low_mem=args.lowmem
|
||||
)
|
||||
|
||||
model.load(
|
||||
save_model=not (args.colab or args.cacheonly) or args.savemodel,
|
||||
initial_load=initial_load,
|
||||
)
|
||||
model.load(
|
||||
save_model=not (args.colab or args.cacheonly) or args.savemodel,
|
||||
initial_load=initial_load,
|
||||
)
|
||||
except SuperLegacyModelError:
|
||||
from modeling.inference_models.legacy_gpt2_hf import CustomGPT2HFTorchInferenceModel
|
||||
model = CustomGPT2HFTorchInferenceModel(
|
||||
koboldai_vars.model,
|
||||
lazy_load=koboldai_vars.lazy_load,
|
||||
low_mem=args.lowmem
|
||||
)
|
||||
|
||||
model.load(
|
||||
save_model=not (args.colab or args.cacheonly) or args.savemodel,
|
||||
initial_load=initial_load,
|
||||
)
|
||||
|
||||
logger.info(f"Pipeline created: {koboldai_vars.model}")
|
||||
else:
|
||||
|
385
modeling/inference_models/hf_torch_4bit.py
Normal file
385
modeling/inference_models/hf_torch_4bit.py
Normal file
@@ -0,0 +1,385 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import json
|
||||
import torch
|
||||
import re
|
||||
import shutil
|
||||
import sys
|
||||
from typing import Union
|
||||
|
||||
from transformers import AutoModelForCausalLM, GPTNeoForCausalLM, AutoTokenizer, LlamaTokenizer
|
||||
from modeling.inference_model import SuperLegacyModelError
|
||||
|
||||
import utils
|
||||
import modeling.lazy_loader as lazy_loader
|
||||
import koboldai_settings
|
||||
from logger import logger, set_logger_verbosity, quiesce_logger
|
||||
|
||||
try:
|
||||
import breakmodel
|
||||
except ModuleNotFoundError as e:
|
||||
# Breakmodel is only expected to work on GPU
|
||||
if not utils.koboldai_vars.use_colab_tpu:
|
||||
raise e
|
||||
|
||||
from modeling.inference_models.hf_torch import HFTorchInferenceModel
|
||||
|
||||
# 4-bit dependencies
|
||||
from pathlib import Path
|
||||
import glob
|
||||
sys.path.insert(0, os.path.abspath(Path("repos/gptq")))
|
||||
from gptj import load_quant as gptj_load_quant
|
||||
from gptneox import load_quant as gptneox_load_quant
|
||||
from llama import load_quant as llama_load_quant
|
||||
from opt import load_quant as opt_load_quant
|
||||
from offload import load_quant_offload
|
||||
monkey_patched_4bit = False
|
||||
|
||||
|
||||
def prepare_4bit_load(modelpath):
|
||||
paths_4bit = ["4bit*.safetensors", "4bit*.pt"]
|
||||
paths_4bit_old = ["4bit-old.pt", "4bit-old.safetensors"]
|
||||
result = False
|
||||
groupsize = -1
|
||||
for p in paths_4bit:
|
||||
p = os.path.join(modelpath, p)
|
||||
val = [v for v in glob.glob(p) if "4bit-old" not in v]
|
||||
if val:
|
||||
result = val[0]
|
||||
fname = Path(result).parts[-1]
|
||||
g = re.findall("^(?:4bit)(?:-)(\d+)(?:g-?)", fname)
|
||||
if g:
|
||||
groupsize = int(g[0])
|
||||
break
|
||||
|
||||
global monkey_patched_4bit
|
||||
|
||||
# Monkey-patch in old-format pt-file support
|
||||
if not result:
|
||||
print("4-bit file not found, falling back to old format.")
|
||||
for p in paths_4bit_old:
|
||||
p = os.path.join(modelpath, p)
|
||||
if os.path.isfile(p):
|
||||
result = p
|
||||
break
|
||||
|
||||
if not result:
|
||||
print("4-bit old-format file not found, loading failed.")
|
||||
raise RuntimeError("4-bit load failed. PT/Safetensors-File not found.")
|
||||
|
||||
import llama, opt, gptneox, gptj, old_quant
|
||||
llama.make_quant = old_quant.old_make_quant
|
||||
opt.make_quant = old_quant.old_make_quant
|
||||
gptneox.make_quant = old_quant.old_make_quant
|
||||
gptj.make_quant = old_quant.old_make_quant
|
||||
monkey_patched_4bit = True
|
||||
elif monkey_patched_4bit:
|
||||
# Undo monkey patch
|
||||
print("Undoing 4-bit old format monkey patch")
|
||||
import llama, opt, gptneox, gptj, quant
|
||||
llama.make_quant = quant.make_quant
|
||||
opt.make_quant = quant.make_quant
|
||||
gptneox.make_quant = quant.make_quant
|
||||
gptj.make_quant = quant.make_quant
|
||||
monkey_patched_4bit = False
|
||||
|
||||
return result, groupsize
|
||||
|
||||
|
||||
class HFTorch4BitInferenceModel(HFTorchInferenceModel):
|
||||
def _load(self, save_model: bool, initial_load: bool) -> None:
|
||||
utils.koboldai_vars.allowsp = True
|
||||
|
||||
# Make model path the same as the model name to make this consistent
|
||||
# with the other loading method if it isn't a known model type. This
|
||||
# code is not just a workaround for below, it is also used to make the
|
||||
# behavior consistent with other loading methods - Henk717
|
||||
# if utils.koboldai_vars.model not in ["NeoCustom", "GPT2Custom"]:
|
||||
# utils.koboldai_vars.custmodpth = utils.koboldai_vars.model
|
||||
|
||||
if self.model_name == "NeoCustom":
|
||||
self.model_name = os.path.basename(
|
||||
os.path.normpath(utils.koboldai_vars.custmodpth)
|
||||
)
|
||||
utils.koboldai_vars.model = self.model_name
|
||||
|
||||
self.lazy_load = False
|
||||
|
||||
self.init_model_config()
|
||||
|
||||
gpulayers = utils.args.breakmodel_gpulayers
|
||||
|
||||
try:
|
||||
gpu_layers_list = [int(l) for l in gpulayers.split(",")]
|
||||
except ValueError:
|
||||
gpu_layers_list = [utils.num_layers(self.model_config)]
|
||||
self.offload_4bit = sum(gpu_layers_list) < utils.num_layers(self.model_config)
|
||||
|
||||
if self.offload_4bit:
|
||||
utils.koboldai_vars.lazy_load = False
|
||||
print("4-bit CPU offloader active")
|
||||
|
||||
tf_kwargs = {
|
||||
"low_cpu_mem_usage": True,
|
||||
}
|
||||
|
||||
# If we're using torch_lazy_loader, we need to get breakmodel config
|
||||
# early so that it knows where to load the individual model tensors
|
||||
if (
|
||||
self.lazy_load
|
||||
and utils.koboldai_vars.hascuda
|
||||
and utils.koboldai_vars.breakmodel
|
||||
and not utils.koboldai_vars.nobreakmodel
|
||||
):
|
||||
self.breakmodel_device_config(self.model_config)
|
||||
|
||||
if self.lazy_load:
|
||||
# If we're using lazy loader, we need to figure out what the model's hidden layers are called
|
||||
with lazy_loader.use_lazy_load(
|
||||
dematerialized_modules=True, use_accelerate_init_empty_weights=True
|
||||
):
|
||||
try:
|
||||
metamodel = AutoModelForCausalLM.from_config(self.model_config)
|
||||
except Exception as e:
|
||||
logger.error(f"Fell back to neo for metamodel due to {e}")
|
||||
try:
|
||||
metamodel = GPTNeoForCausalLM.from_config(self.model_config)
|
||||
except Exception as e:
|
||||
logger.error(f"Falling back again due to {e}")
|
||||
raise SuperLegacyModelError
|
||||
|
||||
utils.layers_module_names = utils.get_layers_module_names(metamodel)
|
||||
utils.module_names = list(metamodel.state_dict().keys())
|
||||
utils.named_buffers = list(metamodel.named_buffers(recurse=True))
|
||||
|
||||
# Download model from Huggingface if it does not exist, otherwise load locally
|
||||
with self._maybe_use_float16(), lazy_loader.use_lazy_load(
|
||||
enable=self.lazy_load,
|
||||
callback=self._get_lazy_load_callback(utils.num_layers(self.model_config))
|
||||
if self.lazy_load
|
||||
else None,
|
||||
dematerialized_modules=True,
|
||||
):
|
||||
if self.lazy_load:
|
||||
# torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time
|
||||
tf_kwargs.pop("low_cpu_mem_usage", None)
|
||||
|
||||
if self.get_local_model_path():
|
||||
# Model is stored locally, load it.
|
||||
self.model = self._get_model(self.get_local_model_path(), tf_kwargs)
|
||||
self.tokenizer = self._get_tokenizer(self.get_local_model_path())
|
||||
else:
|
||||
# Model not stored locally, we need to download it.
|
||||
|
||||
# _rebuild_tensor patch for casting dtype and supporting LazyTensors
|
||||
old_rebuild_tensor = torch._utils._rebuild_tensor
|
||||
|
||||
def new_rebuild_tensor(
|
||||
storage: Union[lazy_loader.LazyTensor, torch.Storage],
|
||||
storage_offset,
|
||||
shape,
|
||||
stride,
|
||||
):
|
||||
if not isinstance(storage, lazy_loader.LazyTensor):
|
||||
dtype = storage.dtype
|
||||
else:
|
||||
dtype = storage.storage_type.dtype
|
||||
if not isinstance(dtype, torch.dtype):
|
||||
dtype = storage.storage_type(0).dtype
|
||||
if dtype is torch.float32 and len(shape) >= 2:
|
||||
utils.koboldai_vars.fp32_model = True
|
||||
return old_rebuild_tensor(storage, storage_offset, shape, stride)
|
||||
|
||||
torch._utils._rebuild_tensor = new_rebuild_tensor
|
||||
self.model = self._get_model(self.model_name, tf_kwargs)
|
||||
self.tokenizer = self._get_tokenizer(self.model_name)
|
||||
torch._utils._rebuild_tensor = old_rebuild_tensor
|
||||
|
||||
if save_model:
|
||||
self.tokenizer.save_pretrained(
|
||||
self.get_local_model_path(ignore_existance=True)
|
||||
)
|
||||
|
||||
if utils.koboldai_vars.fp32_model and not breakmodel.disk_blocks:
|
||||
# Use save_pretrained to convert fp32 models to fp16,
|
||||
# unless we are using disk cache because save_pretrained
|
||||
# is not supported in that case
|
||||
self.model = self.model.half()
|
||||
self.model.save_pretrained(
|
||||
self.get_local_model_path(ignore_existance=True),
|
||||
max_shard_size="500MiB",
|
||||
)
|
||||
|
||||
else:
|
||||
# For fp16 models, we can just copy the model files directly
|
||||
import transformers.configuration_utils
|
||||
import transformers.modeling_utils
|
||||
import transformers.file_utils
|
||||
import huggingface_hub
|
||||
|
||||
# Save the config.json
|
||||
shutil.move(
|
||||
os.path.realpath(
|
||||
huggingface_hub.hf_hub_download(
|
||||
self.model_name,
|
||||
transformers.configuration_utils.CONFIG_NAME,
|
||||
revision=utils.koboldai_vars.revision,
|
||||
cache_dir="cache",
|
||||
local_files_only=True,
|
||||
legacy_cache_layout=False,
|
||||
)
|
||||
),
|
||||
os.path.join(
|
||||
self.get_local_model_path(ignore_existance=True),
|
||||
transformers.configuration_utils.CONFIG_NAME,
|
||||
),
|
||||
)
|
||||
|
||||
if utils.num_shards is None:
|
||||
# Save the pytorch_model.bin or model.safetensors of an unsharded model
|
||||
any_success = False
|
||||
possible_checkpoint_names = [
|
||||
transformers.modeling_utils.WEIGHTS_NAME,
|
||||
"model.safetensors",
|
||||
]
|
||||
|
||||
for possible_checkpoint_name in possible_checkpoint_names:
|
||||
try:
|
||||
shutil.move(
|
||||
os.path.realpath(
|
||||
huggingface_hub.hf_hub_download(
|
||||
self.model_name,
|
||||
possible_checkpoint_name,
|
||||
revision=utils.koboldai_vars.revision,
|
||||
cache_dir="cache",
|
||||
local_files_only=True,
|
||||
legacy_cache_layout=False,
|
||||
)
|
||||
),
|
||||
os.path.join(
|
||||
self.get_local_model_path(
|
||||
ignore_existance=True
|
||||
),
|
||||
possible_checkpoint_name,
|
||||
),
|
||||
)
|
||||
any_success = True
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if not any_success:
|
||||
raise RuntimeError(f"Couldn't find any of {possible_checkpoint_names} in cache for {self.model_name} @ '{utils.koboldai_vars.revisison}'")
|
||||
else:
|
||||
# Handle saving sharded models
|
||||
|
||||
with open(utils.from_pretrained_index_filename) as f:
|
||||
map_data = json.load(f)
|
||||
filenames = set(map_data["weight_map"].values())
|
||||
# Save the pytorch_model.bin.index.json of a sharded model
|
||||
shutil.move(
|
||||
os.path.realpath(utils.from_pretrained_index_filename),
|
||||
os.path.join(
|
||||
self.get_local_model_path(ignore_existance=True),
|
||||
transformers.modeling_utils.WEIGHTS_INDEX_NAME,
|
||||
),
|
||||
)
|
||||
# Then save the pytorch_model-#####-of-#####.bin files
|
||||
for filename in filenames:
|
||||
shutil.move(
|
||||
os.path.realpath(
|
||||
huggingface_hub.hf_hub_download(
|
||||
self.model_name,
|
||||
filename,
|
||||
revision=utils.koboldai_vars.revision,
|
||||
cache_dir="cache",
|
||||
local_files_only=True,
|
||||
legacy_cache_layout=False,
|
||||
)
|
||||
),
|
||||
os.path.join(
|
||||
self.get_local_model_path(
|
||||
ignore_existance=True
|
||||
),
|
||||
filename,
|
||||
),
|
||||
)
|
||||
shutil.rmtree("cache/")
|
||||
|
||||
if not self.lazy_load:
|
||||
utils.layers_module_names = utils.get_layers_module_names(self.model)
|
||||
utils.module_names = list(self.model.state_dict().keys())
|
||||
utils.named_buffers = list(self.model.named_buffers(recurse=True))
|
||||
|
||||
if (
|
||||
utils.koboldai_vars.badwordsids is koboldai_settings.badwordsids_default
|
||||
and utils.koboldai_vars.model_type not in ("gpt2", "gpt_neo", "gptj")
|
||||
):
|
||||
utils.koboldai_vars.badwordsids = [
|
||||
[v]
|
||||
for k, v in self.tokenizer.get_vocab().items()
|
||||
if any(c in str(k) for c in "[]")
|
||||
]
|
||||
|
||||
self.patch_embedding()
|
||||
|
||||
if utils.koboldai_vars.hascuda:
|
||||
if utils.koboldai_vars.usegpu:
|
||||
# Use just VRAM
|
||||
self.model = self.model.half().to(utils.koboldai_vars.gpu_device)
|
||||
elif utils.koboldai_vars.breakmodel:
|
||||
# Use both RAM and VRAM (breakmodel)
|
||||
if not self.lazy_load:
|
||||
self.breakmodel_device_config(self.model.config)
|
||||
self._move_to_devices()
|
||||
elif breakmodel.disk_blocks > 0:
|
||||
# Use disk
|
||||
self._move_to_devices()
|
||||
else:
|
||||
# Use CPU
|
||||
self.model = self.model.to("cpu").float()
|
||||
elif breakmodel.disk_blocks > 0:
|
||||
self._move_to_devices()
|
||||
else:
|
||||
self.model = self.model.to("cpu").float()
|
||||
|
||||
self.model.kai_model = self
|
||||
utils.koboldai_vars.modeldim = self.get_hidden_size()
|
||||
|
||||
def _get_model(self, location: str, tf_kwargs: Dict):
|
||||
path_4bit, groupsize = prepare_4bit_load(utils.koboldai_vars.custmodpth)
|
||||
print(f"Using 4-bit file: {path_4bit}, groupsize {groupsize}")
|
||||
|
||||
print(f"Trying to load {utils.koboldai_vars.model_type} model in 4-bit")
|
||||
if utils.koboldai_vars.model_type == "gptj":
|
||||
if self.offload_4bit:
|
||||
model = load_quant_offload(gptj_load_quant, utils.koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
|
||||
else:
|
||||
model = gptj_load_quant(utils.koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
||||
elif utils.koboldai_vars.model_type == "gpt_neox":
|
||||
if self.offload_4bit:
|
||||
model = load_quant_offload(gptneox_load_quant, utils.koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
|
||||
else:
|
||||
model = gptneox_load_quant(utils.koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
||||
elif utils.koboldai_vars.model_type == "llama":
|
||||
if self.offload_4bit:
|
||||
model = load_quant_offload(llama_load_quant, utils.koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
|
||||
else:
|
||||
model = llama_load_quant(utils.koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
||||
elif utils.koboldai_vars.model_type == "opt":
|
||||
if self.offload_4bit:
|
||||
model = load_quant_offload(opt_load_quant, utils.koboldai_vars.custmodpth, path_4bit, 4, groupsize, gpu_layers_list)
|
||||
else:
|
||||
model = opt_load_quant(utils.koboldai_vars.custmodpth, path_4bit, 4, groupsize)
|
||||
else:
|
||||
raise RuntimeError(f"4-bit load failed. Model type {utils.koboldai_vars.model_type} not supported in 4-bit")
|
||||
|
||||
return model.half()
|
||||
|
||||
def _get_tokenizer(self, location: str):
|
||||
if utils.koboldai_vars.model_type == "llama":
|
||||
tokenizer = LlamaTokenizer.from_pretrained(utils.koboldai_vars.custmodpth)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(utils.koboldai_vars.custmodpth)
|
||||
|
||||
return tokenizer
|
Reference in New Issue
Block a user