prompt_tuner.py now uses lazy loader and accelerate

This commit is contained in:
vfbd
2022-08-22 19:29:20 -04:00
parent 584056b6d5
commit 3d5c83fc23
3 changed files with 424 additions and 27 deletions

View File

@@ -429,6 +429,7 @@ def emit(*args, **kwargs):
return _emit(*args, **kwargs) return _emit(*args, **kwargs)
except AttributeError: except AttributeError:
return socketio.emit(*args, **kwargs) return socketio.emit(*args, **kwargs)
utils.emit = emit
# marshmallow/apispec setup # marshmallow/apispec setup
from apispec import APISpec from apispec import APISpec
@@ -1312,6 +1313,8 @@ def general_startup(override_args=None):
else: else:
args = parser.parse_args() args = parser.parse_args()
utils.args = args
if args.customsettings: if args.customsettings:
f = open (args.customsettings) f = open (args.customsettings)
importedsettings = json.load(f) importedsettings = json.load(f)
@@ -1648,7 +1651,9 @@ def patch_transformers():
if not args.no_aria2: if not args.no_aria2:
utils.aria2_hook(pretrained_model_name_or_path, **kwargs) utils.aria2_hook(pretrained_model_name_or_path, **kwargs)
return old_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs) return old_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
PreTrainedModel.from_pretrained = new_from_pretrained if(not hasattr(PreTrainedModel, "_kai_patched")):
PreTrainedModel.from_pretrained = new_from_pretrained
PreTrainedModel._kai_patched = True
if(hasattr(modeling_utils, "get_checkpoint_shard_files")): if(hasattr(modeling_utils, "get_checkpoint_shard_files")):
old_get_checkpoint_shard_files = modeling_utils.get_checkpoint_shard_files old_get_checkpoint_shard_files = modeling_utils.get_checkpoint_shard_files
def new_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs): def new_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs):
@@ -2490,7 +2495,9 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal
if not args.no_aria2: if not args.no_aria2:
utils.aria2_hook(pretrained_model_name_or_path, **kwargs) utils.aria2_hook(pretrained_model_name_or_path, **kwargs)
return old_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs) return old_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
PreTrainedModel.from_pretrained = new_from_pretrained if(not hasattr(PreTrainedModel, "_kai_patched")):
PreTrainedModel.from_pretrained = new_from_pretrained
PreTrainedModel._kai_patched = True
if(hasattr(modeling_utils, "get_checkpoint_shard_files")): if(hasattr(modeling_utils, "get_checkpoint_shard_files")):
old_get_checkpoint_shard_files = modeling_utils.get_checkpoint_shard_files old_get_checkpoint_shard_files = modeling_utils.get_checkpoint_shard_files
def new_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs): def new_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs):

View File

@@ -15,15 +15,249 @@ import base64
import pickle import pickle
import hashlib import hashlib
import itertools import itertools
import functools
import bisect
import eventlet
import packaging
import gc
import time
from tqdm.auto import tqdm from tqdm.auto import tqdm
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from torch.nn import Embedding, CrossEntropyLoss from torch.nn import Embedding, CrossEntropyLoss
import transformers import transformers
from transformers import AutoTokenizer, GPT2TokenizerFast, AutoConfig from transformers import __version__ as transformers_version
from transformers import AutoTokenizer, GPT2TokenizerFast, AutoConfig, AutoModelForCausalLM, GPTNeoForCausalLM, PreTrainedModel, modeling_utils, GPTNeoModel, GPTJModel
import accelerate
import accelerate.utils
from mkultra.tuning import GPTPromptTuningMixin, GPTNeoPromptTuningLM from mkultra.tuning import GPTPromptTuningMixin, GPTNeoPromptTuningLM
from mkultra.soft_prompt import SoftPrompt from mkultra.soft_prompt import SoftPrompt
from typing import List, Optional, TextIO, Union from typing import Dict, List, Optional, TextIO, Union
try:
from transformers import XGLMModel
except:
pass
try:
from transformers.models.opt.modeling_opt import OPTDecoder
except:
pass
import breakmodel
import torch_lazy_loader
import utils
USE_BREAKMODEL = True
class Send_to_socketio(object):
def write(self, bar):
print(bar, end="")
time.sleep(0.01)
try:
if utils.emit is not None:
utils.emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True)
except:
pass
def patch_transformers_download():
global transformers
import copy, requests, tqdm, time
class Send_to_socketio(object):
def write(self, bar):
bar = bar.replace("\r", "").replace("\n", "")
if bar != "":
try:
print(bar, end="\r")
if utils.emit is not None:
utils.emit('from_server', {'cmd': 'model_load_status', 'data': bar.replace(" ", " ")}, broadcast=True)
eventlet.sleep(seconds=0)
except:
pass
def http_get(
url: str,
temp_file: transformers.utils.hub.BinaryIO,
proxies=None,
resume_size=0,
headers: transformers.utils.hub.Optional[transformers.utils.hub.Dict[str, str]] = None,
file_name: transformers.utils.hub.Optional[str] = None,
):
"""
Download remote file. Do not gobble up errors.
"""
headers = copy.deepcopy(headers)
if resume_size > 0:
headers["Range"] = f"bytes={resume_size}-"
r = requests.get(url, stream=True, proxies=proxies, headers=headers)
transformers.utils.hub._raise_for_status(r)
content_length = r.headers.get("Content-Length")
total = resume_size + int(content_length) if content_length is not None else None
# `tqdm` behavior is determined by `utils.logging.is_progress_bar_enabled()`
# and can be set using `utils.logging.enable/disable_progress_bar()`
if url[-11:] != 'config.json':
progress = tqdm.tqdm(
unit="B",
unit_scale=True,
unit_divisor=1024,
total=total,
initial=resume_size,
desc=f"Downloading {file_name}" if file_name is not None else "Downloading",
file=Send_to_socketio(),
)
for chunk in r.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
if url[-11:] != 'config.json':
progress.update(len(chunk))
temp_file.write(chunk)
if url[-11:] != 'config.json':
progress.close()
transformers.utils.hub.http_get = http_get
def patch_transformers():
global transformers
patch_transformers_download()
old_from_pretrained = PreTrainedModel.from_pretrained.__func__
@classmethod
def new_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
utils.num_shards = None
utils.current_shard = 0
utils.from_pretrained_model_name = pretrained_model_name_or_path
utils.from_pretrained_index_filename = None
utils.from_pretrained_kwargs = kwargs
utils.bar = None
if utils.args is None or not utils.args.no_aria2:
utils.aria2_hook(pretrained_model_name_or_path, **kwargs)
return old_from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
if(not hasattr(PreTrainedModel, "_kai_patched")):
PreTrainedModel.from_pretrained = new_from_pretrained
PreTrainedModel._kai_patched = True
if(hasattr(modeling_utils, "get_checkpoint_shard_files")):
old_get_checkpoint_shard_files = modeling_utils.get_checkpoint_shard_files
def new_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs):
utils.num_shards = utils.get_num_shards(index_filename)
utils.from_pretrained_index_filename = index_filename
return old_get_checkpoint_shard_files(pretrained_model_name_or_path, index_filename, *args, **kwargs)
modeling_utils.get_checkpoint_shard_files = new_get_checkpoint_shard_files
# Some versions of transformers 4.17.0.dev0 are affected by
# https://github.com/huggingface/transformers/issues/15736
# This is a workaround for those versions of transformers.
if(transformers_version == "4.17.0.dev0"):
try:
from transformers.models.xglm.modeling_xglm import XGLMSinusoidalPositionalEmbedding
except ImportError:
pass
else:
@torch.no_grad()
def new_forward(self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0):
bsz, seq_len = inputs_embeds.size()[:-1]
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
past_key_values_length + self.padding_idx + 1, past_key_values_length + sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
).unsqueeze(0).expand(input_shape).contiguous()
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach()
XGLMSinusoidalPositionalEmbedding.forward = new_forward
# Fix a bug in OPTForCausalLM where self.lm_head is the wrong size
if(packaging.version.parse("4.19.0.dev0") <= packaging.version.parse(transformers_version) < packaging.version.parse("4.20.0")):
try:
from transformers import OPTForCausalLM, OPTModel
except ImportError:
pass
else:
# This is the same as the original __init__ but with
# config.hidden_size
# replaced with
# config.word_embed_proj_dim
def new_init(self, config):
super(OPTForCausalLM, self).__init__(config)
self.model = OPTModel(config)
self.lm_head = torch.nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)
self.post_init()
OPTForCausalLM.__init__ = new_init
def move_model_to_devices(model, usegpu, gpu_device):
global generator
if(not utils.HAS_ACCELERATE and not USE_BREAKMODEL):
if(usegpu):
model = model.half().to(gpu_device)
else:
model = model.to('cpu').float()
generator = model.generate
return
import breakmodel
if(utils.HAS_ACCELERATE):
import accelerate.utils
for key, value in model.state_dict().items():
target_dtype = torch.float32 if breakmodel.primary_device == "cpu" else torch.float16
if(value.dtype is not target_dtype):
accelerate.utils.set_module_tensor_to_device(model, key, target_dtype)
disk_blocks = breakmodel.disk_blocks
gpu_blocks = breakmodel.gpu_blocks
ram_blocks = len(utils.layers_module_names) - sum(gpu_blocks)
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
device_map = {}
for name in utils.layers_module_names:
layer = int(name.rsplit(".", 1)[1])
device = ("disk" if layer < disk_blocks else "cpu") if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
device_map[name] = device
for name in utils.get_missing_module_names(model, list(device_map.keys())):
device_map[name] = breakmodel.primary_device
breakmodel.dispatch_model_ex(model, device_map, main_device=breakmodel.primary_device, offload_buffers=True, offload_dir="accelerate-disk-cache")
gc.collect()
generator = model.generate
return
model.half()
gc.collect()
if(hasattr(model, "transformer")):
model.transformer.wte.to(breakmodel.primary_device)
model.transformer.ln_f.to(breakmodel.primary_device)
if(hasattr(model, 'lm_head')):
model.lm_head.to(breakmodel.primary_device)
if(hasattr(model.transformer, 'wpe')):
model.transformer.wpe.to(breakmodel.primary_device)
elif(not hasattr(model.model, "decoder")):
model.model.embed_tokens.to(breakmodel.primary_device)
model.model.layer_norm.to(breakmodel.primary_device)
model.lm_head.to(breakmodel.primary_device)
model.model.embed_positions.to(breakmodel.primary_device)
else:
model.model.decoder.embed_tokens.to(breakmodel.primary_device)
if(model.model.decoder.project_in is not None):
model.model.decoder.project_in.to(breakmodel.primary_device)
if(model.model.decoder.project_out is not None):
model.model.decoder.project_out.to(breakmodel.primary_device)
model.model.decoder.embed_positions.to(breakmodel.primary_device)
gc.collect()
GPTNeoModel.forward = breakmodel.new_forward_neo
if("GPTJModel" in globals()):
GPTJModel.forward = breakmodel.new_forward_neo # type: ignore
if("XGLMModel" in globals()):
XGLMModel.forward = breakmodel.new_forward_xglm # type: ignore
if("OPTDecoder" in globals()):
OPTDecoder.forward = breakmodel.new_forward_opt # type: ignore
generator = model.generate
if(hasattr(model, "transformer")):
breakmodel.move_hidden_layers(model.transformer)
elif(not hasattr(model.model, "decoder")):
breakmodel.move_hidden_layers(model.model, model.model.layers)
else:
breakmodel.move_hidden_layers(model.model.decoder, model.model.decoder.layers)
_PromptTuningPreTrainedModel = Union["UniversalPromptTuningMixin", GPTPromptTuningMixin, transformers.PreTrainedModel] _PromptTuningPreTrainedModel = Union["UniversalPromptTuningMixin", GPTPromptTuningMixin, transformers.PreTrainedModel]
@@ -260,15 +494,19 @@ class TrainerBase(abc.ABC):
kwargs["quiet"] = self.quiet kwargs["quiet"] = self.quiet
raise ConfigurationError(msg, **kwargs) raise ConfigurationError(msg, **kwargs)
def get_hf_checkpoint_metadata(self) -> bool: def _get_model_config(self) -> transformers.configuration_utils.PretrainedConfig:
REVISION = None REVISION = None
params = {}
if(os.path.isdir(self.data.ckpt_path)): if(os.path.isdir(self.data.ckpt_path)):
model_config = AutoConfig.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache") model_config = AutoConfig.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
elif(os.path.isdir("models/{}".format(self.data.ckpt_path.replace('/', '_')))): elif(os.path.isdir("models/{}".format(self.data.ckpt_path.replace('/', '_')))):
model_config = AutoConfig.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache") model_config = AutoConfig.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
else: else:
model_config = AutoConfig.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache") model_config = AutoConfig.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
return model_config
def get_hf_checkpoint_metadata(self) -> bool:
params = {}
model_config = self._get_model_config()
params["tokenizer_id"] = self.data.ckpt_path params["tokenizer_id"] = self.data.ckpt_path
tokenizer = get_tokenizer(self.data.ckpt_path) tokenizer = get_tokenizer(self.data.ckpt_path)
params["newlinemode"] = params.get( params["newlinemode"] = params.get(
@@ -467,7 +705,17 @@ class TrainerBase(abc.ABC):
if isinstance(output_file, str): if isinstance(output_file, str):
f.close() f.close()
def train(self): def train(
self,
breakmodel_primary_device: Optional[Union[str, int, torch.device]] = None,
breakmodel_gpulayers: Optional[List[int]] = None,
breakmodel_disklayers = 0,
):
if breakmodel_gpulayers is None:
breakmodel_gpulayers = []
if breakmodel_primary_device is None:
breakmodel_primary_device = 0 if breakmodel_gpulayers else "cpu"
if self.data.params is not None and "max_batch_size" not in self.data.params: if self.data.params is not None and "max_batch_size" not in self.data.params:
self.data.params["max_batch_size"] = 2048 self.data.params["max_batch_size"] = 2048
@@ -498,30 +746,169 @@ class TrainerBase(abc.ABC):
REVISION = None REVISION = None
tokenizer = self.get_tokenizer() patch_transformers()
model: _PromptTuningPreTrainedModel model: _PromptTuningPreTrainedModel
if(os.path.isdir(self.data.ckpt_path)): model_config = self._get_model_config()
n_layers = utils.num_layers(model_config)
convert_to_float16 = True
hascuda = torch.cuda.is_available()
usegpu = not breakmodel_disklayers and len(breakmodel_gpulayers) == 1 and breakmodel_gpulayers[0] == n_layers
gpu_device = breakmodel_primary_device
breakmodel.disk_blocks = breakmodel_disklayers
disk_blocks = breakmodel.disk_blocks
gpu_blocks = breakmodel.gpu_blocks
ram_blocks = ram_blocks = n_layers - sum(gpu_blocks)
cumulative_gpu_blocks = tuple(itertools.accumulate(gpu_blocks))
def lazy_load_callback(model_dict: Dict[str, Union[torch_lazy_loader.LazyTensor, torch.Tensor]], f, **_):
if lazy_load_callback.nested:
return
lazy_load_callback.nested = True
device_map: Dict[str, Union[str, int]] = {}
@functools.lru_cache(maxsize=None)
def get_original_key(key):
return max((original_key for original_key in utils.module_names if original_key.endswith(key)), key=len)
for key, value in model_dict.items():
original_key = get_original_key(key)
if isinstance(value, torch_lazy_loader.LazyTensor) and not any(original_key.startswith(n) for n in utils.layers_module_names):
device_map[key] = gpu_device if hascuda and usegpu else "cpu" if not hascuda or not USE_BREAKMODEL else breakmodel.primary_device
else:
layer = int(max((n for n in utils.layers_module_names if original_key.startswith(n)), key=len).rsplit(".", 1)[1])
device = gpu_device if hascuda and usegpu else "disk" if layer < disk_blocks and layer < ram_blocks else "cpu" if not hascuda or not USE_BREAKMODEL else "shared" if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)
device_map[key] = device
if utils.num_shards is None or utils.current_shard == 0:
utils.offload_index = {}
if utils.HAS_ACCELERATE:
if os.path.isdir("accelerate-disk-cache"):
# Delete all of the files in the disk cache folder without deleting the folder itself to allow people to create symbolic links for this folder
# (the folder doesn't contain any subfolders so os.remove will do just fine)
for filename in os.listdir("accelerate-disk-cache"):
try:
os.remove(os.path.join("accelerate-disk-cache", filename))
except OSError:
pass
os.makedirs("accelerate-disk-cache", exist_ok=True)
if utils.num_shards is not None:
num_tensors = len(utils.get_sharded_checkpoint_num_tensors(utils.from_pretrained_model_name, utils.from_pretrained_index_filename, **utils.from_pretrained_kwargs))
else:
num_tensors = len(device_map)
print(flush=True)
utils.bar = tqdm(total=num_tensors, desc="Loading model tensors", file=Send_to_socketio())
with zipfile.ZipFile(f, "r") as z:
try:
last_storage_key = None
f = None
current_offset = 0
able_to_pin_layers = True
if utils.num_shards is not None:
utils.current_shard += 1
for key in sorted(device_map.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset)):
storage_key = model_dict[key].key
if storage_key != last_storage_key or model_dict[key].seek_offset < current_offset:
last_storage_key = storage_key
if isinstance(f, zipfile.ZipExtFile):
f.close()
f = z.open(f"archive/data/{storage_key}")
current_offset = 0
if current_offset != model_dict[key].seek_offset:
f.read(model_dict[key].seek_offset - current_offset)
current_offset = model_dict[key].seek_offset
device = device_map[key]
size = functools.reduce(lambda x, y: x * y, model_dict[key].shape, 1)
dtype = model_dict[key].dtype
nbytes = size if dtype is torch.bool else size * ((torch.finfo if dtype.is_floating_point else torch.iinfo)(dtype).bits >> 3)
#print(f"Transferring <{key}> to {f'({device.upper()})' if isinstance(device, str) else '[device ' + str(device) + ']'} ... ", end="", flush=True)
model_dict[key] = model_dict[key].materialize(f, map_location="cpu")
# if model_dict[key].dtype is torch.float32:
# fp32_model = True
if convert_to_float16 and breakmodel.primary_device != "cpu" and hascuda and (USE_BREAKMODEL or usegpu) and model_dict[key].dtype is torch.float32:
model_dict[key] = model_dict[key].to(torch.float16)
if breakmodel.primary_device == "cpu" or (not usegpu and not USE_BREAKMODEL and model_dict[key].dtype is torch.float16):
model_dict[key] = model_dict[key].to(torch.float32)
if device == "shared":
model_dict[key] = model_dict[key].to("cpu").detach_()
if able_to_pin_layers and utils.HAS_ACCELERATE:
try:
model_dict[key] = model_dict[key].pin_memory()
except:
able_to_pin_layers = False
elif device == "disk":
accelerate.utils.offload_weight(model_dict[key], get_original_key(key), "accelerate-disk-cache", index=utils.offload_index)
model_dict[key] = model_dict[key].to("meta")
else:
model_dict[key] = model_dict[key].to(device)
#print("OK", flush=True)
current_offset += nbytes
utils.bar.update(1)
finally:
if utils.num_shards is None or utils.current_shard >= utils.num_shards:
if utils.offload_index:
for name, tensor in utils.named_buffers:
if name not in utils.offload_index:
accelerate.utils.offload_weight(tensor, name, "accelerate-disk-cache", index=utils.offload_index)
accelerate.utils.save_offload_index(utils.offload_index, "accelerate-disk-cache")
utils.bar.close()
utils.bar = None
lazy_load_callback.nested = False
if isinstance(f, zipfile.ZipExtFile):
f.close()
lazy_load_callback.nested = False
# Since we're using lazy loader, we need to figure out what the model's hidden layers are called
with torch_lazy_loader.use_lazy_torch_load(dematerialized_modules=True, use_accelerate_init_empty_weights=True):
try: try:
model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache") metamodel = AutoModelForCausalLM.from_config(model_config)
except Exception as e: except Exception as e:
if("out of memory" in traceback.format_exc().lower()): metamodel = GPTNeoForCausalLM.from_config(model_config)
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.") utils.layers_module_names = utils.get_layers_module_names(metamodel)
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache") utils.module_names = list(metamodel.state_dict().keys())
elif(os.path.isdir("models/{}".format(self.data.ckpt_path.replace('/', '_')))): utils.named_buffers = list(metamodel.named_buffers(recurse=True))
try:
model = AutoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache") with torch_lazy_loader.use_lazy_torch_load(callback=lazy_load_callback, dematerialized_modules=True):
except Exception as e: if(os.path.isdir(self.data.ckpt_path)):
if("out of memory" in traceback.format_exc().lower()): try:
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.") model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
model = GPTNeoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache") except Exception as e:
if("out of memory" in traceback.format_exc().lower()):
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
elif(os.path.isdir("models/{}".format(self.data.ckpt_path.replace('/', '_')))):
try:
model = AutoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
except Exception as e:
if("out of memory" in traceback.format_exc().lower()):
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
model = GPTNeoPromptTuningLM.from_pretrained("models/{}".format(self.data.ckpt_path.replace('/', '_')), revision=REVISION, cache_dir="cache")
else:
try:
model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
except Exception as e:
if("out of memory" in traceback.format_exc().lower()):
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
if(hascuda):
if(usegpu):
model = model.half().to(gpu_device)
elif(breakmodel): # Use both RAM and VRAM (breakmodel)
move_model_to_devices(model, usegpu, gpu_device)
elif(__import__("breakmodel").disk_blocks > 0):
move_model_to_devices(model, usegpu, gpu_device)
else:
model = model.to('cpu').float()
elif(__import__("breakmodel").disk_blocks > 0):
move_model_to_devices(model, usegpu, gpu_device)
else: else:
try: model.to('cpu').float()
model = AutoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
except Exception as e:
if("out of memory" in traceback.format_exc().lower()):
raise RuntimeError("One of your GPUs ran out of memory when KoboldAI tried to load your model.")
model = GPTNeoPromptTuningLM.from_pretrained(self.data.ckpt_path, revision=REVISION, cache_dir="cache")
if step == 0: if step == 0:
soft_embeddings = self.get_initial_soft_embeddings(model) soft_embeddings = self.get_initial_soft_embeddings(model)

View File

@@ -22,6 +22,7 @@ except ImportError:
HAS_ACCELERATE = False HAS_ACCELERATE = False
vars = None vars = None
args = None
num_shards: Optional[int] = None num_shards: Optional[int] = None
current_shard = 0 current_shard = 0
from_pretrained_model_name = "" from_pretrained_model_name = ""
@@ -35,6 +36,8 @@ named_buffers: Optional[List[tuple]] = None
default_sampler_order = [0, 1, 2, 3, 4, 5] default_sampler_order = [0, 1, 2, 3, 4, 5]
emit = None
#==================================================================# #==================================================================#
# Decorator to prevent a function's actions from being run until # Decorator to prevent a function's actions from being run until
# at least x seconds have passed without the function being called # at least x seconds have passed without the function being called