Fix tokenization and whitespace issues with llama-derived models

Work around the 'soft' prefix space behavior of sentencepiece.
Override encode to restore the deleted HF support for decode_with_prefix_space.
Override decode to skip the soft space and return true decoded tokens.
Allow submitting chat messages with embedded newlines.
Split sentences between punctuation and whitespace, rather than after whitespace.
Also include trailing quotes and brackets after sentence stoppers.
This avoids splitting ." and .) into two tokens, for instance.
Insert whitespace at the beginning of the author's note, since sentences are
split with leading whitespace.
Remove spurious newlines at the end of chat responses.
This commit is contained in:
Llama
2023-05-03 01:27:11 -07:00
parent 507da6fcf7
commit 3768848548
4 changed files with 94 additions and 11 deletions

View File

@@ -1,6 +1,7 @@
import os
from typing import Optional
from transformers import AutoConfig
import torch
import utils
import koboldai_settings
@@ -20,8 +21,90 @@ class HFInferenceModel(InferenceModel):
def _post_load(self) -> None:
# These are model specific tokenizer overrides if a model has bad defaults
if utils.koboldai_vars.model_type == "llama":
self.tokenizer.decode_with_prefix_space = True
# Note: self.tokenizer is a GenericTokenizer, and self.tokenizer.tokenizer is the actual LlamaTokenizer
self.tokenizer.decode_with_prefix_space = True # Note, not supported anymore, hence the workaround below.
self.tokenizer.add_bos_token = False
# HF transformers no longer supports decode_with_prefix_space
# We work around this by wrapping decode, encode, and __call__
# with versions that work around the 'prefix space' misfeature
# of sentencepiece.
vocab = self.tokenizer.convert_ids_to_tokens(range(self.tokenizer.vocab_size))
has_prefix_space = {i for i, tok in enumerate(vocab) if tok.startswith("")}
# Wrap 'decode' with a method that always returns text starting with a space
# when the head token starts with a space. This is what 'decode_with_prefix_space'
# used to do, and we implement it using the same technique (building a cache of
# tokens that should have a prefix space, and then prepending a space if the first
# token is in this set.) We also work around a bizarre behavior in which decoding
# a single token 13 behaves differently than decoding a squence containing only [13].
original_decode = type(self.tokenizer.tokenizer).decode
def decode_wrapper(self, token_ids, *args, **kwargs):
first = None
dim0 = False
if isinstance(token_ids, int):
first = token_ids
dim0 = True
elif isinstance(token_ids, torch.Tensor):
# Tensors don't support the Python standard of 'empty is False'
# and the special case of dimension 0 tensors also needs to be handled separately.
if token_ids.dim() == 0:
first = int(token_ids.item())
dim0 = True
elif len(token_ids) > 0:
first = int(token_ids[0])
elif token_ids:
first = token_ids[0]
result = original_decode(self, token_ids, *args, **kwargs)
if first is not None and first in has_prefix_space:
result = " " + result
if dim0:
# Work around this wonky behavior:
# >>> t.decode(13)
# '<0x0A>'
# >>> t.decode([13])
# '\n'
# Not doing this causes token streaming to receive <0x0A> characters instead of newlines.
result = result.replace('<0x0A>', '\n')
return result
# GenericTokenizer overrides __setattr__ so we need to use object.__setattr__ to bypass it
object.__setattr__(self.tokenizer, 'decode', decode_wrapper.__get__(self.tokenizer))
# Wrap encode and __call__ to work around the 'prefix space' misfeature also.
# The problem is that "Bob" at the start of text is encoded as if it is
# " Bob". This creates a problem because it means you can't split text, encode
# the pieces, concatenate the tokens, decode them, and get the original text back.
# The workaround is to prepend a known token that (1) starts with a space; and
# (2) is not the prefix of any other token. After searching through the vocab
# " ," (space comma) is the only token containing only printable ascii characters
# that fits this bill. By prepending ',' to the text, the original encode
# method always returns [1919, ...], where the tail of the sequence is the
# actual encoded result we want without the prefix space behavior.
original_encode = type(self.tokenizer.tokenizer).encode
def encode_wrapper(self, text, *args, **kwargs):
if type(text) is str:
text = ',' + text
result = original_encode(self, text, *args, **kwargs)
result = result[1:]
else:
result = original_encode(self, text, *args, **kwargs)
return result
object.__setattr__(self.tokenizer, 'encode', encode_wrapper.__get__(self.tokenizer))
# Since 'encode' is documented as being deprecated, also override __call__.
# This doesn't appear to currently be used by KoboldAI, but doing so
# in case someone uses it in the future.
original_call = type(self.tokenizer.tokenizer).__call__
def call_wrapper(self, text, *args, **kwargs):
if type(text) is str:
text = ',' + text
result = original_call(self, text, *args, **kwargs)
result = result[1:]
else:
result = original_call(self, text, *args, **kwargs)
return result
object.__setattr__(self.tokenizer, '__call__', call_wrapper.__get__(self.tokenizer))
elif utils.koboldai_vars.model_type == "opt":
self.tokenizer._koboldai_header = self.tokenizer.encode("")
self.tokenizer.add_bos_token = False