Merge pull request #457 from Disty0/united

IPEX fixes
This commit is contained in:
henk717
2023-09-07 14:31:43 +02:00
committed by GitHub
3 changed files with 95 additions and 44 deletions

View File

@@ -2,22 +2,12 @@ import os
import sys
import contextlib
import torch
import intel_extension_for_pytorch as ipex
from .diffusers import ipex_diffusers
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
from .hijacks import ipex_hijacks
from logger import logger
#ControlNet depth_leres++
class DummyDataParallel(torch.nn.Module):
def __new__(cls, module, device_ids=None, output_device=None, dim=0):
if type(device_ids) is list and len(device_ids) > 1:
logger.info("IPEX backend doesn't support DataParallel on multiple XPU devices")
return module.to("xpu")
# pylint: disable=protected-access, missing-function-docstring, line-too-long
def return_null_context(*args, **kwargs):
return contextlib.nullcontext()
def ipex_init():
def ipex_init(): # pylint: disable=too-many-statements
#Replace cuda with xpu:
torch.cuda.current_device = torch.xpu.current_device
torch.cuda.current_stream = torch.xpu.current_stream
@@ -30,6 +20,7 @@ def ipex_init():
torch.cuda.init = torch.xpu.init
torch.cuda.is_available = torch.xpu.is_available
torch.cuda.is_initialized = torch.xpu.is_initialized
torch.cuda.is_current_stream_capturing = lambda: False
torch.cuda.set_device = torch.xpu.set_device
torch.cuda.stream = torch.xpu.stream
torch.cuda.synchronize = torch.xpu.synchronize
@@ -138,8 +129,13 @@ def ipex_init():
torch.cuda.amp.common.amp_definitely_not_available = lambda: False
try:
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
except Exception:
torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
except Exception: # pylint: disable=broad-exception-caught
try:
from .gradscaler import gradscaler_init # pylint: disable=import-outside-toplevel, import-error
gradscaler_init()
torch.cuda.amp.GradScaler = torch.xpu.amp.GradScaler
except Exception: # pylint: disable=broad-exception-caught
torch.cuda.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
#C
torch._C._cuda_getCurrentRawStream = ipex._C._getCurrentStream
@@ -156,10 +152,12 @@ def ipex_init():
torch.cuda.get_device_capability = lambda: [11,7]
torch.cuda.get_device_properties.major = 11
torch.cuda.get_device_properties.minor = 7
torch.backends.cuda.sdp_kernel = return_null_context
torch.nn.DataParallel = DummyDataParallel
torch.cuda.ipc_collect = lambda: None
torch.cuda.utilization = lambda: 0
ipex_hijacks()
ipex_diffusers()
try:
from .diffusers import ipex_diffusers # pylint: disable=import-outside-toplevel, import-error
ipex_diffusers()
except Exception: # pylint: disable=broad-exception-caught
pass

View File

@@ -1,11 +1,13 @@
import torch
import intel_extension_for_pytorch as ipex
import torch.nn.functional as F
import diffusers #0.20.2
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
import torch.nn.functional as F # pylint: disable=ungrouped-imports
import diffusers #0.20.2 # pylint: disable=import-error
# pylint: disable=protected-access, missing-function-docstring, line-too-long
Attention = diffusers.models.attention_processor.Attention
class SlicedAttnProcessor:
class SlicedAttnProcessor: # pylint: disable=too-few-public-methods
r"""
Processor for implementing sliced attention.
@@ -18,7 +20,7 @@ class SlicedAttnProcessor:
def __init__(self, slice_size):
self.slice_size = slice_size
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): # pylint: disable=too-many-statements, too-many-locals, too-many-branches
residual = hidden_states
input_ndim = hidden_states.ndim
@@ -74,7 +76,7 @@ class SlicedAttnProcessor:
end_idx = (i + 1) * self.slice_size
if do_split_2:
for i2 in range(query_tokens // split_2_slice_size):
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
@@ -114,7 +116,7 @@ class SlicedAttnProcessor:
return hidden_states
class AttnProcessor2_0:
class AttnProcessor2_0: # pylint: disable=too-few-public-methods, invalid-name
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
@@ -123,7 +125,7 @@ class AttnProcessor2_0:
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
def __call__( # pylint: disable=too-many-arguments, too-many-statements, too-many-locals, too-many-branches
self,
attn: Attention,
hidden_states,
@@ -208,7 +210,7 @@ class AttnProcessor2_0:
start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size
if do_split_2:
for i2 in range(query_tokens // split_2_slice_size):
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size

View File

@@ -1,8 +1,11 @@
import torch
import intel_extension_for_pytorch as ipex
import contextlib
import importlib
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
class CondFunc:
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
class CondFunc: # pylint: disable=missing-class-docstring
def __new__(cls, orig_func, sub_func, cond_func):
self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str):
@@ -29,6 +32,45 @@ class CondFunc:
else:
return self.__orig_func(*args, **kwargs)
_utils = torch.utils.data._utils
def _shutdown_workers(self):
if _utils is None or _utils.python_exit_status is True or _utils.python_exit_status is None:
return
if hasattr(self, "_shutdown") and not self._shutdown:
self._shutdown = True
try:
if hasattr(self, '_pin_memory_thread'):
self._pin_memory_thread_done_event.set()
self._worker_result_queue.put((None, None))
self._pin_memory_thread.join()
self._worker_result_queue.cancel_join_thread()
self._worker_result_queue.close()
self._workers_done_event.set()
for worker_id in range(len(self._workers)):
if self._persistent_workers or self._workers_status[worker_id]:
self._mark_worker_as_unavailable(worker_id, shutdown=True)
for w in self._workers: # pylint: disable=invalid-name
w.join(timeout=_utils.MP_STATUS_CHECK_INTERVAL)
for q in self._index_queues: # pylint: disable=invalid-name
q.cancel_join_thread()
q.close()
finally:
if self._worker_pids_set:
_utils.signal_handling._remove_worker_pids(id(self))
self._worker_pids_set = False
for w in self._workers: # pylint: disable=invalid-name
if w.is_alive():
w.terminate()
class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument
if isinstance(device_ids, list) and len(device_ids) > 1:
print("IPEX backend doesn't support DataParallel on multiple XPU devices")
return module.to("xpu")
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
return contextlib.nullcontext()
def check_device(device):
return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int))
@@ -51,25 +93,25 @@ def ipex_autocast(*args, **kwargs):
return original_autocast(*args, **kwargs)
original_torch_cat = torch.cat
def torch_cat(input, *args, **kwargs):
if len(input) == 3 and (input[0].dtype != input[1].dtype or input[2].dtype != input[1].dtype):
return original_torch_cat([input[0].to(input[1].dtype), input[1], input[2].to(input[1].dtype)], *args, **kwargs)
def torch_cat(tensor, *args, **kwargs):
if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype):
return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs)
else:
return original_torch_cat(input, *args, **kwargs)
return original_torch_cat(tensor, *args, **kwargs)
original_interpolate = torch.nn.functional.interpolate
def interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False):
if antialias:
return_device = input.device
return_dtype = input.dtype
return original_interpolate(input.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode,
def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments
if antialias or align_corners is not None:
return_device = tensor.device
return_dtype = tensor.dtype
return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode,
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype)
else:
return original_interpolate(input, size=size, scale_factor=scale_factor, mode=mode,
return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode,
align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias)
original_linalg_solve = torch.linalg.solve
def linalg_solve(orig_func, A, B, *args, **kwargs):
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
if A.device != torch.device("cpu") or B.device != torch.device("cpu"):
return_device = A.device
original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(return_device)
@@ -101,10 +143,13 @@ def ipex_hijacks():
CondFunc('torch.tensor',
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
lambda orig_func, *args, device=None, **kwargs: check_device(device))
CondFunc('torch.linspace',
lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs),
lambda orig_func, *args, device=None, **kwargs: check_device(device))
CondFunc('torch.Generator',
lambda orig_func, device: torch.xpu.Generator(device),
lambda orig_func, device: device != torch.device("cpu") and device != "cpu")
lambda orig_func, device=None: torch.xpu.Generator(device),
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu")
CondFunc('torch.batch_norm',
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input,
@@ -115,12 +160,15 @@ def ipex_hijacks():
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input,
weight if weight is not None else torch.ones(input.size()[1], device=input.device),
bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs),
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"))
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"))
#Functions with dtype errors:
CondFunc('torch.nn.modules.GroupNorm.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.nn.modules.linear.Linear.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.bmm',
lambda orig_func, input, mat2, *args, **kwargs: orig_func(input, mat2.to(input.dtype), *args, **kwargs),
lambda orig_func, input, mat2, *args, **kwargs: input.dtype != mat2.dtype)
@@ -142,7 +190,10 @@ def ipex_hijacks():
lambda orig_func, *args, **kwargs: True)
#Functions that make compile mad with CondFunc:
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers
torch.nn.DataParallel = DummyDataParallel
torch.autocast = ipex_autocast
torch.cat = torch_cat
torch.linalg.solve = linalg_solve
torch.nn.functional.interpolate = interpolate
torch.backends.cuda.sdp_kernel = return_null_context