Merge pull request #96 from VE-FORBRYDERNE/dlpack
Use DLPack to convert PyTorch tensors to JAX arrays
This commit is contained in:
commit
2c66461c14
|
@ -38,6 +38,7 @@ import zipfile
|
|||
import requests
|
||||
import random
|
||||
import jax
|
||||
import jax.dlpack
|
||||
from jax.config import config
|
||||
from jax.experimental import maps
|
||||
import jax.numpy as jnp
|
||||
|
@ -990,18 +991,19 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
|||
if "no_transpose" not in transforms:
|
||||
tensor = tensor.T
|
||||
tensor.unsqueeze_(0)
|
||||
if tensor.dtype is torch.float16 or tensor.dtype is torch.float32:
|
||||
tensor = tensor.bfloat16()
|
||||
|
||||
# Shard the tensor so that parts of the tensor can be used
|
||||
# on different TPU cores
|
||||
network.state["params"][spec["module"]][spec["param"]] = move_xmap(
|
||||
jnp.array(
|
||||
jax.dlpack.from_dlpack(torch.utils.dlpack.to_dlpack(
|
||||
reshard_reverse(
|
||||
tensor,
|
||||
params["cores_per_replica"],
|
||||
network.state["params"][spec["module"]][spec["param"]].shape,
|
||||
),
|
||||
dtype=jnp.bfloat16,
|
||||
),
|
||||
)
|
||||
)).copy(),
|
||||
np.empty(params["cores_per_replica"]),
|
||||
)
|
||||
|
||||
|
|
Loading…
Reference in New Issue