Fix base OPT-125M and finetuned OPT models in Colab TPU instances
This commit is contained in:
parent
c94f875608
commit
2a78b66932
|
@ -1225,13 +1225,14 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
||||||
if utils.num_shards is not None:
|
if utils.num_shards is not None:
|
||||||
utils.current_shard += 1
|
utils.current_shard += 1
|
||||||
for key in sorted(model_dict.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset)):
|
for key in sorted(model_dict.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset)):
|
||||||
|
model_spec_key = max((k for k in model_spec.keys() if key.endswith(k)), key=len, default=None)
|
||||||
|
|
||||||
# Some model weights are used by transformers but not by MTJ.
|
# Some model weights are used by transformers but not by MTJ.
|
||||||
# We have to materialize these weights anyways because
|
# We have to materialize these weights anyways because
|
||||||
# transformers will throw a tantrum otherwise. To attain
|
# transformers will throw a tantrum otherwise. To attain
|
||||||
# the least possible memory usage, we create them as meta
|
# the least possible memory usage, we create them as meta
|
||||||
# tensors, which don't take up any actual CPU or TPU memory.
|
# tensors, which don't take up any actual CPU or TPU memory.
|
||||||
if key not in model_spec:
|
if model_spec_key is None:
|
||||||
model_dict[key] = torch.empty(model_dict[key].shape, dtype=model_dict[key].dtype, device="meta")
|
model_dict[key] = torch.empty(model_dict[key].shape, dtype=model_dict[key].dtype, device="meta")
|
||||||
utils.bar.update(1)
|
utils.bar.update(1)
|
||||||
continue
|
continue
|
||||||
|
@ -1246,7 +1247,7 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
||||||
if current_offset != model_dict[key].seek_offset:
|
if current_offset != model_dict[key].seek_offset:
|
||||||
f.read(model_dict[key].seek_offset - current_offset)
|
f.read(model_dict[key].seek_offset - current_offset)
|
||||||
current_offset = model_dict[key].seek_offset
|
current_offset = model_dict[key].seek_offset
|
||||||
spec = model_spec[key]
|
spec = model_spec[model_spec_key]
|
||||||
transforms = set(spec.get("transforms", ()))
|
transforms = set(spec.get("transforms", ()))
|
||||||
if not isinstance(model_dict[key], torch_lazy_loader.LazyTensor):
|
if not isinstance(model_dict[key], torch_lazy_loader.LazyTensor):
|
||||||
error = f"Duplicate key {repr(key)}"
|
error = f"Duplicate key {repr(key)}"
|
||||||
|
|
Loading…
Reference in New Issue