mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-01-22 05:10:35 +01:00
Fix a strange bug where max tokens was capped at 1024
This seems to be related to the model config files, because only certain models have this problem, and replacing ALL configuration files of a "bad" model with those of a "good" model of the same type would fix the problem. Shouldn't be required anymore.
This commit is contained in:
parent
1551c45ba4
commit
2687135e05
18
aiserver.py
18
aiserver.py
@ -2000,17 +2000,17 @@ def calcsubmitbudget(actionlen, winfo, mem, anotetxt, actions):
|
||||
lnanote = 0 # Placeholder for Author's Note length
|
||||
|
||||
# Calculate token budget
|
||||
prompttkns = tokenizer.encode(vars.comregex_ai.sub('', vars.prompt))
|
||||
prompttkns = tokenizer.encode(vars.comregex_ai.sub('', vars.prompt), max_length=1+int(vars.max_length), truncation=True)
|
||||
lnprompt = len(prompttkns)
|
||||
|
||||
memtokens = tokenizer.encode(mem)
|
||||
memtokens = tokenizer.encode(mem, max_length=1+int(vars.max_length), truncation=True)
|
||||
lnmem = len(memtokens)
|
||||
|
||||
witokens = tokenizer.encode(winfo)
|
||||
witokens = tokenizer.encode(winfo, max_length=1+int(vars.max_length), truncation=True)
|
||||
lnwi = len(witokens)
|
||||
|
||||
if(anotetxt != ""):
|
||||
anotetkns = tokenizer.encode(anotetxt)
|
||||
anotetkns = tokenizer.encode(anotetxt, max_length=1+int(vars.max_length), truncation=True)
|
||||
lnanote = len(anotetkns)
|
||||
|
||||
lnsp = vars.sp.shape[0] if vars.sp is not None else 0
|
||||
@ -2039,7 +2039,7 @@ def calcsubmitbudget(actionlen, winfo, mem, anotetxt, actions):
|
||||
|
||||
if(budget <= 0):
|
||||
break
|
||||
acttkns = tokenizer.encode(chunk)
|
||||
acttkns = tokenizer.encode(chunk, max_length=int(vars.max_length), truncation=True)
|
||||
tknlen = len(acttkns)
|
||||
if(tknlen < budget):
|
||||
tokens = acttkns + tokens
|
||||
@ -2173,7 +2173,7 @@ def calcsubmit(txt):
|
||||
#==================================================================#
|
||||
|
||||
def _generate(txt, minimum, maximum, found_entries):
|
||||
gen_in = tokenizer.encode(txt, return_tensors="pt", truncation=True).long()
|
||||
gen_in = tokenizer.encode(txt, return_tensors="pt", max_length=int(vars.max_length), truncation=True).long()
|
||||
if(vars.sp is not None):
|
||||
soft_tokens = torch.arange(
|
||||
model.config.vocab_size,
|
||||
@ -2226,7 +2226,7 @@ def _generate(txt, minimum, maximum, found_entries):
|
||||
winfo, mem, anotetxt, _found_entries = calcsubmitbudgetheader(txt, force_use_txt=True)
|
||||
found_entries[i].update(_found_entries)
|
||||
txt, _, _ = calcsubmitbudget(len(actions), winfo, mem, anotetxt, actions)
|
||||
encoded.append(tokenizer.encode(txt, return_tensors="pt", truncation=True)[0].long().to(genout.device))
|
||||
encoded.append(tokenizer.encode(txt, return_tensors="pt", max_length=int(vars.max_length), truncation=True)[0].long().to(genout.device))
|
||||
max_length = len(max(encoded, key=len))
|
||||
encoded = torch.stack(tuple(torch.nn.functional.pad(e, (max_length - len(e), 0), value=model.config.pad_token_id or model.config.eos_token_id) for e in encoded))
|
||||
genout = torch.cat(
|
||||
@ -2532,8 +2532,8 @@ def getnewcontent(txt):
|
||||
return txt
|
||||
|
||||
# Tokenize the last context and the generated content
|
||||
ctxtokens = tokenizer.encode(vars.lastctx)
|
||||
txttokens = tokenizer.encode(txt)
|
||||
ctxtokens = tokenizer.encode(vars.lastctx, max_length=1+int(vars.max_length), truncation=True)
|
||||
txttokens = tokenizer.encode(txt, max_length=1+int(vars.max_length), truncation=True)
|
||||
dif = (len(txttokens) - len(ctxtokens)) * -1
|
||||
|
||||
# Remove the context from the returned text
|
||||
|
Loading…
Reference in New Issue
Block a user