Lazy loader now moves all non-layer weights to primary device

This commit is contained in:
Gnome Ann 2022-06-19 16:44:23 -04:00
parent 26c319519e
commit 21de36c4b0

View File

@ -1677,7 +1677,7 @@ def load_model(use_gpu=True, gpu_layers=None, initial_load=False, online_model="
for key, value in model_dict.items():
if isinstance(value, torch_lazy_loader.LazyTensor) and not any(key.startswith(n) or key.startswith(n.split(".", 1)[1]) for n in vars.layers_module_names):
device_map[key] = vars.gpu_device if vars.hascuda and vars.usegpu else "cpu"
device_map[key] = vars.gpu_device if vars.hascuda and vars.usegpu else "cpu" if not vars.hascuda or not vars.breakmodel else breakmodel.primary_device
else:
layer = int(max((n for n in vars.layers_module_names if key.startswith(n) or key.startswith(n.split(".", 1)[1])), key=len).rsplit(".", 1)[1])
device = vars.gpu_device if vars.hascuda and vars.usegpu else "cpu" if not vars.hascuda or not vars.breakmodel else "shared" if layer < ram_blocks else bisect.bisect_right(cumulative_gpu_blocks, layer - ram_blocks)