mirror of
https://github.com/KoboldAI/KoboldAI-Client.git
synced 2025-06-05 21:59:24 +02:00
renamed vars to koboldai_vars
This commit is contained in:
@@ -563,7 +563,7 @@ class PenalizingCausalTransformer(CausalTransformer):
|
||||
compiling_callback()
|
||||
numseqs = numseqs_aux.shape[0]
|
||||
# These are the tokens that we don't want the AI to ever write
|
||||
badwords = jnp.array(vars.badwordsids).squeeze()
|
||||
badwords = jnp.array(koboldai_vars.badwordsids).squeeze()
|
||||
@hk.transform
|
||||
def generate_sample(context, ctx_length):
|
||||
# Give the initial context to the transformer
|
||||
@@ -1041,8 +1041,8 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
||||
elif "eos_token_id" in kwargs:
|
||||
pad_token_id = kwargs["eos_token_id"]
|
||||
|
||||
if not hasattr(vars, "sampler_order") or not vars.sampler_order:
|
||||
vars.sampler_order = utils.default_sampler_order.copy()
|
||||
if not hasattr(koboldai_vars, "sampler_order") or not koboldai_vars.sampler_order:
|
||||
koboldai_vars.sampler_order = utils.default_sampler_order.copy()
|
||||
|
||||
default_params = {
|
||||
"compat": "j",
|
||||
@@ -1061,7 +1061,7 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
||||
}
|
||||
params = kwargs
|
||||
|
||||
if vars.model == "TPUMeshTransformerGPTNeoX":
|
||||
if koboldai_vars.model == "TPUMeshTransformerGPTNeoX":
|
||||
default_params = {
|
||||
"compat": "neox",
|
||||
"layers": 44,
|
||||
@@ -1080,9 +1080,9 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
||||
|
||||
# Try to convert HF config.json to MTJ config
|
||||
if hf_checkpoint:
|
||||
spec_path = os.path.join("maps", vars.model_type + ".json")
|
||||
spec_path = os.path.join("maps", koboldai_vars.model_type + ".json")
|
||||
if not os.path.isfile(spec_path):
|
||||
raise NotImplementedError(f"Unsupported model type {repr(vars.model_type)}")
|
||||
raise NotImplementedError(f"Unsupported model type {repr(koboldai_vars.model_type)}")
|
||||
with open(spec_path) as f:
|
||||
lazy_load_spec = json.load(f)
|
||||
|
||||
@@ -1133,7 +1133,7 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
||||
params[param] = default_params[param]
|
||||
|
||||
# Load tokenizer
|
||||
if vars.model == "TPUMeshTransformerGPTNeoX":
|
||||
if koboldai_vars.model == "TPUMeshTransformerGPTNeoX":
|
||||
tokenizer = Tokenizer.from_file(os.path.join(path, "20B_tokenizer.json"))
|
||||
def new_encode(old_encode):
|
||||
def encode(s, *args, **kwargs):
|
||||
@@ -1181,19 +1181,19 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
||||
|
||||
global badwords
|
||||
# These are the tokens that we don't want the AI to ever write
|
||||
badwords = jnp.array(vars.badwordsids).squeeze()
|
||||
badwords = jnp.array(koboldai_vars.badwordsids).squeeze()
|
||||
|
||||
if not path.endswith("/"):
|
||||
path += "/"
|
||||
|
||||
network = PenalizingCausalTransformer(params, dematerialized=True)
|
||||
|
||||
if not hf_checkpoint and vars.model != "TPUMeshTransformerGPTNeoX":
|
||||
if not hf_checkpoint and koboldai_vars.model != "TPUMeshTransformerGPTNeoX":
|
||||
network.state = read_ckpt_lowmem(network.state, path, devices.shape[1])
|
||||
#network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))
|
||||
return
|
||||
|
||||
if vars.model == "TPUMeshTransformerGPTNeoX":
|
||||
if koboldai_vars.model == "TPUMeshTransformerGPTNeoX":
|
||||
print("\n\n\nThis model has ", f"{hk.data_structures.tree_size(network.state['params']):,d}".replace(",", " "), " parameters.\n")
|
||||
read_neox_checkpoint(network.state, path, params)
|
||||
return
|
||||
@@ -1339,58 +1339,58 @@ def load_model(path: str, driver_version="tpu_driver0.1_dev20210607", hf_checkpo
|
||||
f.close()
|
||||
callback.nested = False
|
||||
|
||||
if os.path.isdir(vars.model.replace('/', '_')):
|
||||
if os.path.isdir(koboldai_vars.model.replace('/', '_')):
|
||||
import shutil
|
||||
shutil.move(vars.model.replace('/', '_'), "models/{}".format(vars.model.replace('/', '_')))
|
||||
shutil.move(koboldai_vars.model.replace('/', '_'), "models/{}".format(koboldai_vars.model.replace('/', '_')))
|
||||
print("\n", flush=True)
|
||||
with torch_lazy_loader.use_lazy_torch_load(callback=callback, dematerialized_modules=True):
|
||||
if(os.path.isdir(vars.custmodpth)):
|
||||
if(os.path.isdir(koboldai_vars.custmodpth)):
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache")
|
||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
pass
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache", use_fast=False)
|
||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
||||
except Exception as e:
|
||||
try:
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache")
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=vars.revision, cache_dir="cache")
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache")
|
||||
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
model = GPTNeoForCausalLM.from_pretrained(vars.custmodpth, revision=vars.revision, cache_dir="cache")
|
||||
elif(os.path.isdir("models/{}".format(vars.model.replace('/', '_')))):
|
||||
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.custmodpth, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
elif(os.path.isdir("models/{}".format(koboldai_vars.model.replace('/', '_')))):
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache")
|
||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
pass
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache", use_fast=False)
|
||||
tokenizer = AutoTokenizer.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
||||
except Exception as e:
|
||||
try:
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache")
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=vars.revision, cache_dir="cache")
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache")
|
||||
model = AutoModelForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
model = GPTNeoForCausalLM.from_pretrained("models/{}".format(vars.model.replace('/', '_')), revision=vars.revision, cache_dir="cache")
|
||||
model = GPTNeoForCausalLM.from_pretrained("models/{}".format(koboldai_vars.model.replace('/', '_')), revision=koboldai_vars.revision, cache_dir="cache")
|
||||
else:
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache")
|
||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
pass
|
||||
try:
|
||||
tokenizer = AutoTokenizer.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache", use_fast=False)
|
||||
tokenizer = AutoTokenizer.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache", use_fast=False)
|
||||
except Exception as e:
|
||||
try:
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache")
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=vars.revision, cache_dir="cache")
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2", revision=koboldai_vars.revision, cache_dir="cache")
|
||||
try:
|
||||
model = AutoModelForCausalLM.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache")
|
||||
model = AutoModelForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
except Exception as e:
|
||||
model = GPTNeoForCausalLM.from_pretrained(vars.model, revision=vars.revision, cache_dir="cache")
|
||||
model = GPTNeoForCausalLM.from_pretrained(koboldai_vars.model, revision=koboldai_vars.revision, cache_dir="cache")
|
||||
|
||||
#network.state = network.move_xmap(network.state, np.zeros(cores_per_replica))
|
||||
|
Reference in New Issue
Block a user