Make TPU in line with new lazyload behavior

This commit is contained in:
somebody
2023-07-03 17:12:07 -05:00
parent 31a3046a18
commit 1bb2d2621c

View File

@@ -1196,6 +1196,7 @@ def load_model(path: str, model_type: str, badwordsids=koboldai_settings.badword
if utils.num_shards is not None: if utils.num_shards is not None:
utils.current_shard += 1 utils.current_shard += 1
for key in sorted(model_dict.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset)): for key in sorted(model_dict.keys(), key=lambda k: (model_dict[k].key, model_dict[k].seek_offset)):
model_spec_key = max((k for k in model_spec.keys() if key.endswith(k)), key=len, default=None) model_spec_key = max((k for k in model_spec.keys() if key.endswith(k)), key=len, default=None)
@@ -1210,31 +1211,16 @@ def load_model(path: str, model_type: str, badwordsids=koboldai_settings.badword
koboldai_vars.loaded_layers += 1 koboldai_vars.loaded_layers += 1
continue continue
storage_key = model_dict[key].key
if storage_key != last_storage_key or model_dict[key].seek_offset < current_offset:
last_storage_key = storage_key
if isinstance(f, zipfile.ZipExtFile):
f.close()
try:
f = z.open(f"archive/data/{storage_key}")
except:
f = z.open(f"{zipfolder}/data/{storage_key}")
current_offset = 0
if current_offset != model_dict[key].seek_offset:
f.read(model_dict[key].seek_offset - current_offset)
current_offset = model_dict[key].seek_offset
spec = model_spec[model_spec_key] spec = model_spec[model_spec_key]
transforms = set(spec.get("transforms", ())) transforms = set(spec.get("transforms", ()))
if not isinstance(model_dict[key], lazy_loader.LazyTensor): if not isinstance(model_dict[key], lazy_loader.LazyTensor):
error = f"Duplicate key {repr(key)}" error = f"Duplicate key {repr(key)}"
print("\n\nERROR: " + error, file=sys.stderr) print("\n\nERROR: " + error, file=sys.stderr)
raise RuntimeError(error) raise RuntimeError(error)
size = functools.reduce(lambda x, y: x * y, model_dict[key].shape, 1)
dtype = model_dict[key].dtype tensor = model_dict[key].materialize(map_location="cpu")
nbytes = size if dtype is torch.bool else size * ((torch.finfo if dtype.is_floating_point else torch.iinfo)(dtype).bits >> 3)
tensor = model_dict[key].materialize(f, map_location="cpu")
model_dict[key] = tensor.to("meta") model_dict[key] = tensor.to("meta")
current_offset += nbytes
# MTJ requires certain mathematical operations to be performed # MTJ requires certain mathematical operations to be performed
# on tensors in order for them to be in the correct format # on tensors in order for them to be in the correct format