From 33f9f2dc822f7ac21dd448447c1c2ddda1e6032e Mon Sep 17 00:00:00 2001 From: Gnome Ann <> Date: Sun, 16 Jan 2022 21:09:10 -0500 Subject: [PATCH 1/5] Show message when TPU backend is compiling --- aiserver.py | 29 ++++++++++++++++++++++++++++- static/application.js | 11 ++++++++--- templates/index.html | 2 +- tpu_mtj_backend.py | 18 +++++++++++++++++- 4 files changed, 54 insertions(+), 6 deletions(-) diff --git a/aiserver.py b/aiserver.py index 2be0811f..7bf3230f 100644 --- a/aiserver.py +++ b/aiserver.py @@ -14,6 +14,7 @@ os.environ['EVENTLET_THREADPOOL_SIZE'] = '50' from eventlet import tpool from os import path, getcwd +import time import re import json import collections @@ -127,6 +128,8 @@ class vars: lua_edited = set() # Set of chunk numbers that were edited from a Lua generation modifier lua_deleted = set() # Set of chunk numbers that were deleted from a Lua generation modifier generated_tkns = 0 # If using a backend that supports Lua generation modifiers, how many tokens have already been generated, otherwise 0 + compiling = False # If using a TPU Colab, this will be set to True when the TPU backend starts compiling and then set to False again + checking = False # Whether or not we are actively checking to see if TPU backend is compiling or not spfilename = "" # Filename of soft prompt to load, or an empty string if not using a soft prompt userscripts = [] # List of userscripts to load last_userscripts = [] # List of previous userscript filenames from the previous time userscripts were send via usstatitems @@ -638,7 +641,7 @@ log.setLevel(logging.ERROR) # Start flask & SocketIO print("{0}Initializing Flask... {1}".format(colors.PURPLE, colors.END), end="") -from flask import Flask, render_template, Response, request +from flask import Flask, render_template, Response, request, copy_current_request_context from flask_socketio import SocketIO, emit app = Flask(__name__) app.config['SECRET KEY'] = 'secret!' @@ -1054,6 +1057,13 @@ else: break return excluded_world_info, regeneration_required, halt + def tpumtjgenerate_compiling_callback() -> None: + print(colors.GREEN + "TPU backend compilation triggered" + colors.END) + vars.compiling = True + + def tpumtjgenerate_stopped_compiling_callback() -> None: + vars.compiling = False + # If we're running Colab or OAI, we still need a tokenizer. if(vars.model == "Colab"): from transformers import GPT2TokenizerFast @@ -1068,6 +1078,8 @@ else: import tpu_mtj_backend tpu_mtj_backend.warper_callback = tpumtjgenerate_warper_callback tpu_mtj_backend.stopping_callback = tpumtjgenerate_stopping_callback + tpu_mtj_backend.compiling_callback = tpumtjgenerate_compiling_callback + tpu_mtj_backend.stopped_compiling_callback = tpumtjgenerate_stopped_compiling_callback tpu_mtj_backend.load_model(vars.custmodpth) vars.allowsp = True vars.modeldim = int(tpu_mtj_backend.params["d_model"]) @@ -1645,6 +1657,7 @@ def execute_genmod(): vars.lua_koboldbridge.execute_genmod() def execute_outmod(): + emit('from_server', {'cmd': 'hidemsg', 'data': ''}, broadcast=True) try: tpool.execute(vars.lua_koboldbridge.execute_outmod) except lupa.LuaError as e: @@ -2251,6 +2264,18 @@ def settingschanged(): #==================================================================# # Take input text from SocketIO and decide what to do with it #==================================================================# + +def check_for_backend_compilation(): + if(vars.checking): + return + vars.checking = True + for _ in range(31): + time.sleep(0.06276680299820175) + if(vars.compiling): + emit('from_server', {'cmd': 'warnmsg', 'data': 'Compiling TPU backend—this usually takes 1–2 minutes...'}, broadcast=True) + break + vars.checking = False + def actionsubmit(data, actionmode=0, force_submit=False, force_prompt_gen=False, disable_recentrng=False): # Ignore new submissions if the AI is currently busy if(vars.aibusy): @@ -2966,6 +2991,8 @@ def tpumtjgenerate(txt, minimum, maximum, found_entries=None): global past + socketio.start_background_task(copy_current_request_context(check_for_backend_compilation)) + if(vars.dynamicscan or (not vars.nogenmod and vars.has_genmod)): context = np.tile(np.uint32(txt), (vars.numseqs, 1)) diff --git a/static/application.js b/static/application.js index 403a9d8b..de703be1 100644 --- a/static/application.js +++ b/static/application.js @@ -663,9 +663,9 @@ function showMessage(msg) { message_text.html(msg); } -function errMessage(msg) { +function errMessage(msg, type="error") { message_text.removeClass(); - message_text.addClass("color_red"); + message_text.addClass(type == "warn" ? "color_orange" : "color_red"); message_text.html(msg); } @@ -1932,7 +1932,12 @@ $(document).ready(function(){ } } else if(msg.cmd == "errmsg") { // Send error message - errMessage(msg.data); + errMessage(msg.data, "error"); + } else if(msg.cmd == "warnmsg") { + // Send warning message + errMessage(msg.data, "warn"); + } else if(msg.cmd == "hidemsg") { + hideMessage(); } else if(msg.cmd == "texteffect") { // Apply color highlight to line of text newTextHighlight($("#n"+msg.data)) diff --git a/templates/index.html b/templates/index.html index 8bab5ea6..dec0bcae 100644 --- a/templates/index.html +++ b/templates/index.html @@ -17,7 +17,7 @@ - +
diff --git a/tpu_mtj_backend.py b/tpu_mtj_backend.py index c68af60c..1afabb27 100644 --- a/tpu_mtj_backend.py +++ b/tpu_mtj_backend.py @@ -26,6 +26,15 @@ def warper_callback(logits) -> np.array: def stopping_callback(generated, n_generated, excluded_world_info) -> Tuple[List[set], bool, bool]: raise NotImplementedError("`tpu_mtj_backend.stopping_callback()` needs to be defined") +def started_compiling_callback() -> None: + pass + +def stopped_compiling_callback() -> None: + pass + +def compiling_callback() -> None: + pass + def show_spinner(): bar = progressbar.ProgressBar(max_value=progressbar.UnknownLength, widgets=[progressbar.Timer(), ' ', progressbar.BouncingBar(left='[', right=']', marker='█')]) @@ -358,6 +367,7 @@ class PenalizingCausalTransformer(CausalTransformer): # Initialize super().__init__(config) def generate_static(state, key, ctx, ctx_length, gen_length, numseqs_aux, sampler_options, soft_embeddings=None): + compiling_callback() numseqs = numseqs_aux.shape[0] # These are the tokens that we don't want the AI to ever write self.badwords = jnp.array([6880, 50256, 42496, 4613, 17414, 22039, 16410, 27, 29, 38430, 37922, 15913, 24618, 28725, 58, 47175, 36937, 26700, 12878, 16471, 37981, 5218, 29795, 13412, 45160, 3693, 49778, 4211, 20598, 36475, 33409, 44167, 32406, 29847, 29342, 42669, 685, 25787, 7359, 3784, 5320, 33994, 33490, 34516, 43734, 17635, 24293, 9959, 23785, 21737, 28401, 18161, 26358, 32509, 1279, 38155, 18189, 26894, 6927, 14610, 23834, 11037, 14631, 26933, 46904, 22330, 25915, 47934, 38214, 1875, 14692, 41832, 13163, 25970, 29565, 44926, 19841, 37250, 49029, 9609, 44438, 16791, 17816, 30109, 41888, 47527, 42924, 23984, 49074, 33717, 31161, 49082, 30138, 31175, 12240, 14804, 7131, 26076, 33250, 3556, 38381, 36338, 32756, 46581, 17912, 49146]) @@ -452,6 +462,7 @@ class PenalizingCausalTransformer(CausalTransformer): axis_resources={'shard': 'mp', 'batch': 'dp'}, ) def generate_initial(state, key, ctx, ctx_length, numseqs_aux, soft_embeddings=None): + compiling_callback() numseqs = numseqs_aux.shape[0] @hk.transform def generate_initial_inner(context, ctx_length): @@ -552,6 +563,7 @@ class PenalizingCausalTransformer(CausalTransformer): n_generated = 0 regeneration_required = False halt = False + started_compiling_callback() generate_data, sample_key = self.generate_initial_xmap(self.state, jnp.array(key.take(batch_size)), ctx, ctx_length, numseqs_aux, soft_embeddings) sample_key = np.asarray(sample_key[0, 0]) while True: @@ -574,13 +586,15 @@ class PenalizingCausalTransformer(CausalTransformer): break else: break + stopped_compiling_callback() return sample_data, n_generated, regeneration_required, halt def generate_static(self, ctx, ctx_length, gen_length, numseqs, sampler_options, return_logits=False, soft_embeddings=None): assert not return_logits key = hk.PRNGSequence(random.randint(0, 2 ** 60)) batch_size = ctx.shape[0] self.batch_size = batch_size - return self.generate_static_xmap( + started_compiling_callback() + result = self.generate_static_xmap( self.state, jnp.array(key.take(batch_size)), ctx, @@ -590,6 +604,8 @@ class PenalizingCausalTransformer(CausalTransformer): sampler_options, soft_embeddings, ) + stopped_compiling_callback() + return result def infer_dynamic( From bc3141b2e61abcae7881cd998f716cc7d3cccecc Mon Sep 17 00:00:00 2001 From: henk717