diff --git a/aiserver.py b/aiserver.py index 6355ba4e..480cbe6e 100644 --- a/aiserver.py +++ b/aiserver.py @@ -1718,7 +1718,6 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal lazy_load_callback.nested = True device_map: Dict[str, Union[str, int]] = {} - offload_map: Dict[str, str] = {} @functools.lru_cache(maxsize=None) def get_original_key(key): @@ -1801,6 +1800,9 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal finally: if utils.num_shards is None or utils.current_shard >= utils.num_shards: if utils.offload_index: + for name, tensor in vars.named_buffers: + if name not in utils.offload_index: + accelerate.utils.offload_weight(tensor, name, "accelerate-disk-cache", index=utils.offload_index) accelerate.utils.save_offload_index(utils.offload_index, "accelerate-disk-cache") utils.bar.close() utils.bar = None @@ -1895,6 +1897,7 @@ def load_model(use_gpu=True, gpu_layers=None, disk_layers=None, initial_load=Fal metamodel = GPTNeoForCausalLM.from_config(model_config) vars.layers_module_names = utils.get_layers_module_names(metamodel) vars.module_names = list(metamodel.state_dict().keys()) + vars.named_buffers = list(metamodel.named_buffers(recurse=True)) with maybe_use_float16(), torch_lazy_loader.use_lazy_torch_load(enable=vars.lazy_load, callback=get_lazy_load_callback(utils.num_layers(model_config)) if vars.lazy_load else None, dematerialized_modules=True): if(vars.lazy_load): # torch_lazy_loader.py and low_cpu_mem_usage can't be used at the same time lowmem = {}