Automatically support soft prompts for all transformers models

This commit is contained in:
Gnome Ann 2022-06-19 13:11:58 -04:00
parent cc56718a7e
commit 042cf3e560

View File

@ -1210,8 +1210,37 @@ def get_oai_models(key):
print("{0}ERROR!{1}".format(colors.RED, colors.END))
print(req.json())
emit('from_server', {'cmd': 'errmsg', 'data': req.json()})
# Function to patch transformers to use our soft prompt
def patch_causallm(cls):
if(getattr(cls, "_koboldai_patch_causallm_patched", False)):
return
old_forward = cls.forward
def new_causallm_forward(self, *args, **kwargs):
input_ids = kwargs.get('input_ids').to(self.device)
assert input_ids is not None
kwargs['input_ids'] = None
if(vars.sp is not None):
shifted_input_ids = input_ids - self.config.vocab_size
input_ids.clamp_(max=self.config.vocab_size-1)
inputs_embeds = self.get_input_embeddings()(input_ids)
if(vars.sp is not None):
vars.sp = vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device)
inputs_embeds = torch.where(
(shifted_input_ids >= 0)[..., None],
vars.sp[shifted_input_ids.clamp(min=0)],
inputs_embeds,
)
if(hasattr(self, "model") and hasattr(self.model, "embed_scale")):
inputs_embeds *= self.model.embed_scale
kwargs['inputs_embeds'] = inputs_embeds
return old_forward(self, *args, **kwargs)
cls.forward = new_causallm_forward
cls._koboldai_patch_causallm_patched = True
return cls
def patch_transformers():
global transformers
old_from_pretrained = PreTrainedModel.from_pretrained.__func__
@ -1259,42 +1288,6 @@ def patch_transformers():
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, -1).detach()
XGLMSinusoidalPositionalEmbedding.forward = new_forward
# Patch transformers to use our soft prompt
def patch_causallm(cls):
old_forward = cls.forward
def new_causallm_forward(self, *args, **kwargs):
input_ids = kwargs.get('input_ids').to(self.device)
assert input_ids is not None
kwargs['input_ids'] = None
if(vars.sp is not None):
shifted_input_ids = input_ids - self.config.vocab_size
input_ids.clamp_(max=self.config.vocab_size-1)
if(hasattr(self, "transformer")):
inputs_embeds = self.transformer.wte(input_ids)
elif(not hasattr(self.model, "decoder")):
inputs_embeds = self.model.embed_tokens(input_ids)
else:
inputs_embeds = self.model.decoder.embed_tokens(input_ids)
if(vars.sp is not None):
vars.sp = vars.sp.to(inputs_embeds.dtype).to(inputs_embeds.device)
inputs_embeds = torch.where(
(shifted_input_ids >= 0)[..., None],
vars.sp[shifted_input_ids.clamp(min=0)],
inputs_embeds,
)
if(hasattr(self, "model") and hasattr(self.model, "embed_scale")):
inputs_embeds *= self.model.embed_scale
kwargs['inputs_embeds'] = inputs_embeds
return old_forward(self, *args, **kwargs)
cls.forward = new_causallm_forward
for cls in (GPT2LMHeadModel, GPTNeoForCausalLM):
patch_causallm(cls)
for c in ("GPTJForCausalLM", "XGLMForCausalLM", "OPTForCausalLM"):
try:
patch_causallm(getattr(__import__("transformers"), c))
except:
pass
# Fix a bug in OPTForCausalLM where self.lm_head is the wrong size
if(packaging.version.parse("4.19.0.dev0") <= packaging.version.parse(transformers_version) < packaging.version.parse("4.20.0")):
@ -1796,6 +1789,7 @@ def load_model(use_gpu=True, gpu_layers=None, initial_load=False, online_model="
else:
model = model.to('cpu').float()
generator = model.generate
patch_causallm(model.__class__)
# Use the Generic implementation
else:
lowmem = maybe_low_cpu_mem_usage()
@ -1923,7 +1917,9 @@ def load_model(use_gpu=True, gpu_layers=None, initial_load=False, online_model="
for filename in filenames:
shutil.move(transformers.file_utils.get_from_cache(transformers.file_utils.hf_bucket_url(vars.model, filename, revision=vars.revision), cache_dir="cache", local_files_only=True), os.path.join("models/{}".format(vars.model.replace('/', '_')), filename))
shutil.rmtree("cache/")
patch_causallm(model.__class__)
if(vars.hascuda):
if(vars.usegpu):
vars.modeldim = get_hidden_size_from_model(model)