With all of the trivial parts of the memory interface moved over, we can get right into moving over the bits that are used. Note that this does require the use of GetInstance from the global system instance to be used within hle_ipc.cpp and the gdbstub. This is fine for the time being, as they both already rely on the global system instance in other functions. These will be removed in a change directed at both of these respectively. For now, it's sufficient, as it still accomplishes the goal of de-globalizing the memory code.
151 lines
5.0 KiB
C++
151 lines
5.0 KiB
C++
// Copyright 2014 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "common/assert.h"
|
|
#include "core/core.h"
|
|
#include "core/hle/kernel/errors.h"
|
|
#include "core/hle/kernel/handle_table.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/mutex.h"
|
|
#include "core/hle/kernel/object.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/scheduler.h"
|
|
#include "core/hle/kernel/thread.h"
|
|
#include "core/hle/result.h"
|
|
#include "core/memory.h"
|
|
|
|
namespace Kernel {
|
|
|
|
/// Returns the number of threads that are waiting for a mutex, and the highest priority one among
|
|
/// those.
|
|
static std::pair<std::shared_ptr<Thread>, u32> GetHighestPriorityMutexWaitingThread(
|
|
const std::shared_ptr<Thread>& current_thread, VAddr mutex_addr) {
|
|
|
|
std::shared_ptr<Thread> highest_priority_thread;
|
|
u32 num_waiters = 0;
|
|
|
|
for (const auto& thread : current_thread->GetMutexWaitingThreads()) {
|
|
if (thread->GetMutexWaitAddress() != mutex_addr)
|
|
continue;
|
|
|
|
ASSERT(thread->GetStatus() == ThreadStatus::WaitMutex);
|
|
|
|
++num_waiters;
|
|
if (highest_priority_thread == nullptr ||
|
|
thread->GetPriority() < highest_priority_thread->GetPriority()) {
|
|
highest_priority_thread = thread;
|
|
}
|
|
}
|
|
|
|
return {highest_priority_thread, num_waiters};
|
|
}
|
|
|
|
/// Update the mutex owner field of all threads waiting on the mutex to point to the new owner.
|
|
static void TransferMutexOwnership(VAddr mutex_addr, std::shared_ptr<Thread> current_thread,
|
|
std::shared_ptr<Thread> new_owner) {
|
|
const auto threads = current_thread->GetMutexWaitingThreads();
|
|
for (const auto& thread : threads) {
|
|
if (thread->GetMutexWaitAddress() != mutex_addr)
|
|
continue;
|
|
|
|
ASSERT(thread->GetLockOwner() == current_thread.get());
|
|
current_thread->RemoveMutexWaiter(thread);
|
|
if (new_owner != thread)
|
|
new_owner->AddMutexWaiter(thread);
|
|
}
|
|
}
|
|
|
|
Mutex::Mutex(Core::System& system) : system{system} {}
|
|
Mutex::~Mutex() = default;
|
|
|
|
ResultCode Mutex::TryAcquire(VAddr address, Handle holding_thread_handle,
|
|
Handle requesting_thread_handle) {
|
|
// The mutex address must be 4-byte aligned
|
|
if ((address % sizeof(u32)) != 0) {
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
|
|
std::shared_ptr<Thread> current_thread =
|
|
SharedFrom(system.CurrentScheduler().GetCurrentThread());
|
|
std::shared_ptr<Thread> holding_thread = handle_table.Get<Thread>(holding_thread_handle);
|
|
std::shared_ptr<Thread> requesting_thread = handle_table.Get<Thread>(requesting_thread_handle);
|
|
|
|
// TODO(Subv): It is currently unknown if it is possible to lock a mutex in behalf of another
|
|
// thread.
|
|
ASSERT(requesting_thread == current_thread);
|
|
|
|
const u32 addr_value = system.Memory().Read32(address);
|
|
|
|
// If the mutex isn't being held, just return success.
|
|
if (addr_value != (holding_thread_handle | Mutex::MutexHasWaitersFlag)) {
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
if (holding_thread == nullptr) {
|
|
return ERR_INVALID_HANDLE;
|
|
}
|
|
|
|
// Wait until the mutex is released
|
|
current_thread->SetMutexWaitAddress(address);
|
|
current_thread->SetWaitHandle(requesting_thread_handle);
|
|
|
|
current_thread->SetStatus(ThreadStatus::WaitMutex);
|
|
current_thread->InvalidateWakeupCallback();
|
|
|
|
// Update the lock holder thread's priority to prevent priority inversion.
|
|
holding_thread->AddMutexWaiter(current_thread);
|
|
|
|
system.PrepareReschedule();
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultCode Mutex::Release(VAddr address) {
|
|
// The mutex address must be 4-byte aligned
|
|
if ((address % sizeof(u32)) != 0) {
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
std::shared_ptr<Thread> current_thread =
|
|
SharedFrom(system.CurrentScheduler().GetCurrentThread());
|
|
auto [thread, num_waiters] = GetHighestPriorityMutexWaitingThread(current_thread, address);
|
|
|
|
// There are no more threads waiting for the mutex, release it completely.
|
|
if (thread == nullptr) {
|
|
Memory::Write32(address, 0);
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
// Transfer the ownership of the mutex from the previous owner to the new one.
|
|
TransferMutexOwnership(address, current_thread, thread);
|
|
|
|
u32 mutex_value = thread->GetWaitHandle();
|
|
|
|
if (num_waiters >= 2) {
|
|
// Notify the guest that there are still some threads waiting for the mutex
|
|
mutex_value |= Mutex::MutexHasWaitersFlag;
|
|
}
|
|
|
|
// Grant the mutex to the next waiting thread and resume it.
|
|
Memory::Write32(address, mutex_value);
|
|
|
|
ASSERT(thread->GetStatus() == ThreadStatus::WaitMutex);
|
|
thread->ResumeFromWait();
|
|
|
|
thread->SetLockOwner(nullptr);
|
|
thread->SetCondVarWaitAddress(0);
|
|
thread->SetMutexWaitAddress(0);
|
|
thread->SetWaitHandle(0);
|
|
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
|
|
|
|
system.PrepareReschedule();
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
} // namespace Kernel
|