diff --git a/src/video_core/CMakeLists.txt b/src/video_core/CMakeLists.txt
index 9b931976a..47190c464 100644
--- a/src/video_core/CMakeLists.txt
+++ b/src/video_core/CMakeLists.txt
@@ -236,7 +236,6 @@ add_library(video_core STATIC
     texture_cache/types.h
     texture_cache/util.cpp
     texture_cache/util.h
-    textures/astc.cpp
     textures/astc.h
     textures/decoders.cpp
     textures/decoders.h
diff --git a/src/video_core/host_shaders/CMakeLists.txt b/src/video_core/host_shaders/CMakeLists.txt
index 3494318ca..2208e1922 100644
--- a/src/video_core/host_shaders/CMakeLists.txt
+++ b/src/video_core/host_shaders/CMakeLists.txt
@@ -1,4 +1,5 @@
 set(SHADER_FILES
+    astc_decoder.comp
     block_linear_unswizzle_2d.comp
     block_linear_unswizzle_3d.comp
     convert_depth_to_float.frag
diff --git a/src/video_core/host_shaders/StringShaderHeader.cmake b/src/video_core/host_shaders/StringShaderHeader.cmake
index c0fc49768..1b4bc6103 100644
--- a/src/video_core/host_shaders/StringShaderHeader.cmake
+++ b/src/video_core/host_shaders/StringShaderHeader.cmake
@@ -6,7 +6,27 @@ get_filename_component(CONTENTS_NAME ${SOURCE_FILE} NAME)
 string(REPLACE "." "_" CONTENTS_NAME ${CONTENTS_NAME})
 string(TOUPPER ${CONTENTS_NAME} CONTENTS_NAME)
 
-file(READ ${SOURCE_FILE} CONTENTS)
+FILE(READ ${SOURCE_FILE} line_contents)
+
+# Replace double quotes with single quotes,
+# as double quotes will be used to wrap the lines
+STRING(REGEX REPLACE "\"" "'" line_contents "${line_contents}")
+
+# CMake separates list elements with semicolons, but semicolons
+# are used extensively in the shader code.
+# Replace with a temporary marker, to be reverted later.
+STRING(REGEX REPLACE ";" "{{SEMICOLON}}" line_contents "${line_contents}")
+
+# Make every line an individual element in the CMake list.
+STRING(REGEX REPLACE "\n" ";" line_contents "${line_contents}")
+
+# Build the shader string, wrapping each line in double quotes.
+foreach(line IN LISTS line_contents)
+    string(CONCAT CONTENTS "${CONTENTS}" \"${line}\\n\"\n)
+endforeach()
+
+# Revert the original semicolons in the source.
+STRING(REGEX REPLACE "{{SEMICOLON}}" ";" CONTENTS "${CONTENTS}")
 
 get_filename_component(OUTPUT_DIR ${HEADER_FILE} DIRECTORY)
 make_directory(${OUTPUT_DIR})
diff --git a/src/video_core/host_shaders/astc_decoder.comp b/src/video_core/host_shaders/astc_decoder.comp
new file mode 100644
index 000000000..703e34587
--- /dev/null
+++ b/src/video_core/host_shaders/astc_decoder.comp
@@ -0,0 +1,1339 @@
+// Copyright 2021 yuzu Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#version 450
+
+#ifdef VULKAN
+
+#define BEGIN_PUSH_CONSTANTS layout(push_constant) uniform PushConstants {
+#define END_PUSH_CONSTANTS };
+#define UNIFORM(n)
+#define BINDING_INPUT_BUFFER 0
+#define BINDING_ENC_BUFFER 1
+#define BINDING_6_TO_8_BUFFER 2
+#define BINDING_7_TO_8_BUFFER 3
+#define BINDING_8_TO_8_BUFFER 4
+#define BINDING_BYTE_TO_16_BUFFER 5
+#define BINDING_SWIZZLE_BUFFER 6
+#define BINDING_OUTPUT_IMAGE 7
+
+#else // ^^^ Vulkan ^^^ // vvv OpenGL vvv
+
+#define BEGIN_PUSH_CONSTANTS
+#define END_PUSH_CONSTANTS
+#define UNIFORM(n) layout(location = n) uniform
+#define BINDING_SWIZZLE_BUFFER 0
+#define BINDING_INPUT_BUFFER 1
+#define BINDING_ENC_BUFFER 2
+#define BINDING_6_TO_8_BUFFER 3
+#define BINDING_7_TO_8_BUFFER 4
+#define BINDING_8_TO_8_BUFFER 5
+#define BINDING_BYTE_TO_16_BUFFER 6
+#define BINDING_OUTPUT_IMAGE 0
+
+#endif
+
+layout(local_size_x = 32, local_size_y = 32, local_size_z = 1) in;
+
+BEGIN_PUSH_CONSTANTS
+UNIFORM(1) uvec2 block_dims;
+
+UNIFORM(2) uint bytes_per_block_log2;
+UNIFORM(3) uint layer_stride;
+UNIFORM(4) uint block_size;
+UNIFORM(5) uint x_shift;
+UNIFORM(6) uint block_height;
+UNIFORM(7) uint block_height_mask;
+END_PUSH_CONSTANTS
+
+struct EncodingData {
+    uint encoding;
+    uint num_bits;
+    uint bit_value;
+    uint quint_trit_value;
+};
+
+struct TexelWeightParams {
+    uvec2 size;
+    uint max_weight;
+    bool dual_plane;
+    bool error_state;
+    bool void_extent_ldr;
+    bool void_extent_hdr;
+};
+
+// Swizzle data
+layout(binding = BINDING_SWIZZLE_BUFFER, std430) readonly buffer SwizzleTable {
+    uint swizzle_table[];
+};
+
+layout(binding = BINDING_INPUT_BUFFER, std430) readonly buffer InputBufferU32 {
+    uint astc_data[];
+};
+
+// ASTC Encodings data
+layout(binding = BINDING_ENC_BUFFER, std430) readonly buffer EncodingsValues {
+    EncodingData encoding_values[];
+};
+// ASTC Precompiled tables
+layout(binding = BINDING_6_TO_8_BUFFER, std430) readonly buffer REPLICATE_6_BIT_TO_8 {
+    uint REPLICATE_6_BIT_TO_8_TABLE[];
+};
+layout(binding = BINDING_7_TO_8_BUFFER, std430) readonly buffer REPLICATE_7_BIT_TO_8 {
+    uint REPLICATE_7_BIT_TO_8_TABLE[];
+};
+layout(binding = BINDING_8_TO_8_BUFFER, std430) readonly buffer REPLICATE_8_BIT_TO_8 {
+    uint REPLICATE_8_BIT_TO_8_TABLE[];
+};
+layout(binding = BINDING_BYTE_TO_16_BUFFER, std430) readonly buffer REPLICATE_BYTE_TO_16 {
+    uint REPLICATE_BYTE_TO_16_TABLE[];
+};
+
+layout(binding = BINDING_OUTPUT_IMAGE, rgba8) uniform writeonly image2DArray dest_image;
+
+const uint GOB_SIZE_X = 64;
+const uint GOB_SIZE_Y = 8;
+const uint GOB_SIZE_Z = 1;
+const uint GOB_SIZE = GOB_SIZE_X * GOB_SIZE_Y * GOB_SIZE_Z;
+
+const uint GOB_SIZE_X_SHIFT = 6;
+const uint GOB_SIZE_Y_SHIFT = 3;
+const uint GOB_SIZE_Z_SHIFT = 0;
+const uint GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT + GOB_SIZE_Z_SHIFT;
+
+const uvec2 SWIZZLE_MASK = uvec2(GOB_SIZE_X - 1, GOB_SIZE_Y - 1);
+
+const int BLOCK_SIZE_IN_BYTES = 16;
+
+const int BLOCK_INFO_ERROR = 0;
+const int BLOCK_INFO_VOID_EXTENT_HDR = 1;
+const int BLOCK_INFO_VOID_EXTENT_LDR = 2;
+const int BLOCK_INFO_NORMAL = 3;
+
+const int JUST_BITS = 0;
+const int QUINT = 1;
+const int TRIT = 2;
+
+// The following constants are expanded variants of the Replicate()
+// function calls corresponding to the following arguments:
+// value: index into the generated table
+// num_bits: the after "REPLICATE" in the table name. i.e. 4 is num_bits in REPLICATE_4.
+// to_bit: the integer after "TO_"
+const uint REPLICATE_BIT_TO_7_TABLE[2] = uint[](0, 127);
+const uint REPLICATE_1_BIT_TO_9_TABLE[2] = uint[](0, 511);
+
+const uint REPLICATE_1_BIT_TO_8_TABLE[2] = uint[](0, 255);
+const uint REPLICATE_2_BIT_TO_8_TABLE[4] = uint[](0, 85, 170, 255);
+const uint REPLICATE_3_BIT_TO_8_TABLE[8] = uint[](0, 36, 73, 109, 146, 182, 219, 255);
+const uint REPLICATE_4_BIT_TO_8_TABLE[16] =
+    uint[](0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255);
+const uint REPLICATE_5_BIT_TO_8_TABLE[32] =
+    uint[](0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165,
+           173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255);
+const uint REPLICATE_1_BIT_TO_6_TABLE[2] = uint[](0, 63);
+const uint REPLICATE_2_BIT_TO_6_TABLE[4] = uint[](0, 21, 42, 63);
+const uint REPLICATE_3_BIT_TO_6_TABLE[8] = uint[](0, 9, 18, 27, 36, 45, 54, 63);
+const uint REPLICATE_4_BIT_TO_6_TABLE[16] =
+    uint[](0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63);
+const uint REPLICATE_5_BIT_TO_6_TABLE[32] =
+    uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 45,
+           47, 49, 51, 53, 55, 57, 59, 61, 63);
+
+// Input ASTC texture globals
+uint current_index = 0;
+int bitsread = 0;
+uint total_bitsread = 0;
+uint local_buff[16];
+
+// Color data globals
+uint color_endpoint_data[16];
+int color_bitsread = 0;
+uint total_color_bitsread = 0;
+int color_index = 0;
+
+// Four values, two endpoints, four maximum paritions
+uint color_values[32];
+int colvals_index = 0;
+
+// Weight data globals
+uint texel_weight_data[16];
+int texel_bitsread = 0;
+uint total_texel_bitsread = 0;
+int texel_index = 0;
+
+bool texel_flag = false;
+
+// Global "vectors" to be pushed into when decoding
+EncodingData result_vector[100];
+int result_index = 0;
+
+EncodingData texel_vector[100];
+int texel_vector_index = 0;
+
+uint unquantized_texel_weights[2][144];
+
+uint SwizzleOffset(uvec2 pos) {
+    pos = pos & SWIZZLE_MASK;
+    return swizzle_table[pos.y * 64 + pos.x];
+}
+
+uint ReadTexel(uint offset) {
+    // extract the 8-bit value from the 32-bit packed data.
+    return bitfieldExtract(astc_data[offset / 4], int((offset * 8) & 24), 8);
+}
+
+// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
+// is the same as [(num_bits - 1):0] and repeats all the way down.
+uint Replicate(uint val, uint num_bits, uint to_bit) {
+    if (num_bits == 0 || to_bit == 0) {
+        return 0;
+    }
+    const uint v = val & uint((1 << num_bits) - 1);
+    uint res = v;
+    uint reslen = num_bits;
+    while (reslen < to_bit) {
+        uint comp = 0;
+        if (num_bits > to_bit - reslen) {
+            uint newshift = to_bit - reslen;
+            comp = num_bits - newshift;
+            num_bits = newshift;
+        }
+        res = uint(res << num_bits);
+        res = uint(res | (v >> comp));
+        reslen += num_bits;
+    }
+    return res;
+}
+
+uvec4 ReplicateByteTo16(uvec4 value) {
+    return uvec4(REPLICATE_BYTE_TO_16_TABLE[value.x], REPLICATE_BYTE_TO_16_TABLE[value.y],
+                 REPLICATE_BYTE_TO_16_TABLE[value.z], REPLICATE_BYTE_TO_16_TABLE[value.w]);
+}
+
+uint ReplicateBitTo7(uint value) {
+    return REPLICATE_BIT_TO_7_TABLE[value];
+}
+
+uint ReplicateBitTo9(uint value) {
+    return REPLICATE_1_BIT_TO_9_TABLE[value];
+}
+
+uint FastReplicateTo8(uint value, uint num_bits) {
+    switch (num_bits) {
+    case 1:
+        return REPLICATE_1_BIT_TO_8_TABLE[value];
+    case 2:
+        return REPLICATE_2_BIT_TO_8_TABLE[value];
+    case 3:
+        return REPLICATE_3_BIT_TO_8_TABLE[value];
+    case 4:
+        return REPLICATE_4_BIT_TO_8_TABLE[value];
+    case 5:
+        return REPLICATE_5_BIT_TO_8_TABLE[value];
+    case 6:
+        return REPLICATE_6_BIT_TO_8_TABLE[value];
+    case 7:
+        return REPLICATE_7_BIT_TO_8_TABLE[value];
+    case 8:
+        return REPLICATE_8_BIT_TO_8_TABLE[value];
+    }
+    return Replicate(value, num_bits, 8);
+}
+
+uint FastReplicateTo6(uint value, uint num_bits) {
+    switch (num_bits) {
+    case 1:
+        return REPLICATE_1_BIT_TO_6_TABLE[value];
+    case 2:
+        return REPLICATE_2_BIT_TO_6_TABLE[value];
+    case 3:
+        return REPLICATE_3_BIT_TO_6_TABLE[value];
+    case 4:
+        return REPLICATE_4_BIT_TO_6_TABLE[value];
+    case 5:
+        return REPLICATE_5_BIT_TO_6_TABLE[value];
+    }
+    return Replicate(value, num_bits, 6);
+}
+
+uint Div3Floor(uint v) {
+    return (v * 0x5556) >> 16;
+}
+
+uint Div3Ceil(uint v) {
+    return Div3Floor(v + 2);
+}
+
+uint Div5Floor(uint v) {
+    return (v * 0x3334) >> 16;
+}
+
+uint Div5Ceil(uint v) {
+    return Div5Floor(v + 4);
+}
+
+uint Hash52(uint p) {
+    p ^= p >> 15;
+    p -= p << 17;
+    p += p << 7;
+    p += p << 4;
+    p ^= p >> 5;
+    p += p << 16;
+    p ^= p >> 7;
+    p ^= p >> 3;
+    p ^= p << 6;
+    p ^= p >> 17;
+    return p;
+}
+
+uint SelectPartition(uint seed, uint x, uint y, uint z, uint partition_count, bool small_block) {
+    if (partition_count == 1) {
+        return 0;
+    }
+    if (small_block) {
+        x <<= 1;
+        y <<= 1;
+        z <<= 1;
+    }
+
+    seed += (partition_count - 1) * 1024;
+
+    uint rnum = Hash52(uint(seed));
+    uint seed1 = uint(rnum & 0xF);
+    uint seed2 = uint((rnum >> 4) & 0xF);
+    uint seed3 = uint((rnum >> 8) & 0xF);
+    uint seed4 = uint((rnum >> 12) & 0xF);
+    uint seed5 = uint((rnum >> 16) & 0xF);
+    uint seed6 = uint((rnum >> 20) & 0xF);
+    uint seed7 = uint((rnum >> 24) & 0xF);
+    uint seed8 = uint((rnum >> 28) & 0xF);
+    uint seed9 = uint((rnum >> 18) & 0xF);
+    uint seed10 = uint((rnum >> 22) & 0xF);
+    uint seed11 = uint((rnum >> 26) & 0xF);
+    uint seed12 = uint(((rnum >> 30) | (rnum << 2)) & 0xF);
+
+    seed1 = (seed1 * seed1);
+    seed2 = (seed2 * seed2);
+    seed3 = (seed3 * seed3);
+    seed4 = (seed4 * seed4);
+    seed5 = (seed5 * seed5);
+    seed6 = (seed6 * seed6);
+    seed7 = (seed7 * seed7);
+    seed8 = (seed8 * seed8);
+    seed9 = (seed9 * seed9);
+    seed10 = (seed10 * seed10);
+    seed11 = (seed11 * seed11);
+    seed12 = (seed12 * seed12);
+
+    int sh1, sh2, sh3;
+    if ((seed & 1) > 0) {
+        sh1 = (seed & 2) > 0 ? 4 : 5;
+        sh2 = (partition_count == 3) ? 6 : 5;
+    } else {
+        sh1 = (partition_count == 3) ? 6 : 5;
+        sh2 = (seed & 2) > 0 ? 4 : 5;
+    }
+    sh3 = (seed & 0x10) > 0 ? sh1 : sh2;
+
+    seed1 = (seed1 >> sh1);
+    seed2 = (seed2 >> sh2);
+    seed3 = (seed3 >> sh1);
+    seed4 = (seed4 >> sh2);
+    seed5 = (seed5 >> sh1);
+    seed6 = (seed6 >> sh2);
+    seed7 = (seed7 >> sh1);
+    seed8 = (seed8 >> sh2);
+    seed9 = (seed9 >> sh3);
+    seed10 = (seed10 >> sh3);
+    seed11 = (seed11 >> sh3);
+    seed12 = (seed12 >> sh3);
+
+    uint a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
+    uint b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
+    uint c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
+    uint d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
+
+    a &= 0x3F;
+    b &= 0x3F;
+    c &= 0x3F;
+    d &= 0x3F;
+
+    if (partition_count < 4) {
+        d = 0;
+    }
+    if (partition_count < 3) {
+        c = 0;
+    }
+
+    if (a >= b && a >= c && a >= d) {
+        return 0;
+    } else if (b >= c && b >= d) {
+        return 1;
+    } else if (c >= d) {
+        return 2;
+    } else {
+        return 3;
+    }
+}
+
+uint Select2DPartition(uint seed, uint x, uint y, uint partition_count, bool small_block) {
+    return SelectPartition(seed, x, y, 0, partition_count, small_block);
+}
+
+uint ReadBit() {
+    if (current_index >= local_buff.length()) {
+        return 0;
+    }
+    uint bit = bitfieldExtract(local_buff[current_index], bitsread, 1);
+    ++bitsread;
+    ++total_bitsread;
+    if (bitsread == 8) {
+        ++current_index;
+        bitsread = 0;
+    }
+    return bit;
+}
+
+uint StreamBits(uint num_bits) {
+    uint ret = 0;
+    for (uint i = 0; i < num_bits; i++) {
+        ret |= ((ReadBit() & 1) << i);
+    }
+    return ret;
+}
+
+uint ReadColorBit() {
+    uint bit = 0;
+    if (texel_flag) {
+        bit = bitfieldExtract(texel_weight_data[texel_index], texel_bitsread, 1);
+        ++texel_bitsread;
+        ++total_texel_bitsread;
+        if (texel_bitsread == 8) {
+            ++texel_index;
+            texel_bitsread = 0;
+        }
+    } else {
+        bit = bitfieldExtract(color_endpoint_data[color_index], color_bitsread, 1);
+        ++color_bitsread;
+        ++total_color_bitsread;
+        if (color_bitsread == 8) {
+            ++color_index;
+            color_bitsread = 0;
+        }
+    }
+    return bit;
+}
+
+uint StreamColorBits(uint num_bits) {
+    uint ret = 0;
+    for (uint i = 0; i < num_bits; i++) {
+        ret |= ((ReadColorBit() & 1) << i);
+    }
+    return ret;
+}
+
+void ResultEmplaceBack(EncodingData val) {
+    if (texel_flag) {
+        texel_vector[texel_vector_index] = val;
+        ++texel_vector_index;
+    } else {
+        result_vector[result_index] = val;
+        ++result_index;
+    }
+}
+
+// Returns the number of bits required to encode n_vals values.
+uint GetBitLength(uint n_vals, uint encoding_index) {
+    uint total_bits = encoding_values[encoding_index].num_bits * n_vals;
+    if (encoding_values[encoding_index].encoding == TRIT) {
+        total_bits += Div5Ceil(n_vals * 8);
+    } else if (encoding_values[encoding_index].encoding == QUINT) {
+        total_bits += Div3Ceil(n_vals * 7);
+    }
+    return total_bits;
+}
+
+uint GetNumWeightValues(uvec2 size, bool dual_plane) {
+    uint n_vals = size.x * size.y;
+    if (dual_plane) {
+        n_vals *= 2;
+    }
+    return n_vals;
+}
+
+uint GetPackedBitSize(uvec2 size, bool dual_plane, uint max_weight) {
+    uint n_vals = GetNumWeightValues(size, dual_plane);
+    return GetBitLength(n_vals, max_weight);
+}
+
+uint BitsBracket(uint bits, uint pos) {
+    return ((bits >> pos) & 1);
+}
+
+uint BitsOp(uint bits, uint start, uint end) {
+    if (start == end) {
+        return BitsBracket(bits, start);
+    } else if (start > end) {
+        uint t = start;
+        start = end;
+        end = t;
+    }
+
+    uint mask = (1 << (end - start + 1)) - 1;
+    return ((bits >> start) & mask);
+}
+
+void DecodeQuintBlock(uint num_bits) {
+    uint m[3];
+    uint q[3];
+    uint Q;
+    m[0] = StreamColorBits(num_bits);
+    Q = StreamColorBits(3);
+    m[1] = StreamColorBits(num_bits);
+    Q |= StreamColorBits(2) << 3;
+    m[2] = StreamColorBits(num_bits);
+    Q |= StreamColorBits(2) << 5;
+    if (BitsOp(Q, 1, 2) == 3 && BitsOp(Q, 5, 6) == 0) {
+        q[0] = 4;
+        q[1] = 4;
+        q[2] = (BitsBracket(Q, 0) << 2) | ((BitsBracket(Q, 4) & ~BitsBracket(Q, 0)) << 1) |
+               (BitsBracket(Q, 3) & ~BitsBracket(Q, 0));
+    } else {
+        uint C = 0;
+        if (BitsOp(Q, 1, 2) == 3) {
+            q[2] = 4;
+            C = (BitsOp(Q, 3, 4) << 3) | ((~BitsOp(Q, 5, 6) & 3) << 1) | BitsBracket(Q, 0);
+        } else {
+            q[2] = BitsOp(Q, 5, 6);
+            C = BitsOp(Q, 0, 4);
+        }
+        if (BitsOp(C, 0, 2) == 5) {
+            q[1] = 4;
+            q[0] = BitsOp(C, 3, 4);
+        } else {
+            q[1] = BitsOp(C, 3, 4);
+            q[0] = BitsOp(C, 0, 2);
+        }
+    }
+    for (uint i = 0; i < 3; i++) {
+        EncodingData val;
+        val.encoding = QUINT;
+        val.num_bits = num_bits;
+        val.bit_value = m[i];
+        val.quint_trit_value = q[i];
+        ResultEmplaceBack(val);
+    }
+}
+
+void DecodeTritBlock(uint num_bits) {
+    uint m[5];
+    uint t[5];
+    uint T;
+    m[0] = StreamColorBits(num_bits);
+    T = StreamColorBits(2);
+    m[1] = StreamColorBits(num_bits);
+    T |= StreamColorBits(2) << 2;
+    m[2] = StreamColorBits(num_bits);
+    T |= StreamColorBits(1) << 4;
+    m[3] = StreamColorBits(num_bits);
+    T |= StreamColorBits(2) << 5;
+    m[4] = StreamColorBits(num_bits);
+    T |= StreamColorBits(1) << 7;
+    uint C = 0;
+    if (BitsOp(T, 2, 4) == 7) {
+        C = (BitsOp(T, 5, 7) << 2) | BitsOp(T, 0, 1);
+        t[4] = 2;
+        t[3] = 2;
+    } else {
+        C = BitsOp(T, 0, 4);
+        if (BitsOp(T, 5, 6) == 3) {
+            t[4] = 2;
+            t[3] = BitsBracket(T, 7);
+        } else {
+            t[4] = BitsBracket(T, 7);
+            t[3] = BitsOp(T, 5, 6);
+        }
+    }
+    if (BitsOp(C, 0, 1) == 3) {
+        t[2] = 2;
+        t[1] = BitsBracket(C, 4);
+        t[0] = (BitsBracket(C, 3) << 1) | (BitsBracket(C, 2) & ~BitsBracket(C, 3));
+    } else if (BitsOp(C, 2, 3) == 3) {
+        t[2] = 2;
+        t[1] = 2;
+        t[0] = BitsOp(C, 0, 1);
+    } else {
+        t[2] = BitsBracket(C, 4);
+        t[1] = BitsOp(C, 2, 3);
+        t[0] = (BitsBracket(C, 1) << 1) | (BitsBracket(C, 0) & ~BitsBracket(C, 1));
+    }
+    for (uint i = 0; i < 5; i++) {
+        EncodingData val;
+        val.encoding = TRIT;
+        val.num_bits = num_bits;
+        val.bit_value = m[i];
+        val.quint_trit_value = t[i];
+        ResultEmplaceBack(val);
+    }
+}
+
+void DecodeIntegerSequence(uint max_range, uint num_values) {
+    EncodingData val = encoding_values[max_range];
+    uint vals_decoded = 0;
+    while (vals_decoded < num_values) {
+        switch (val.encoding) {
+        case QUINT:
+            DecodeQuintBlock(val.num_bits);
+            vals_decoded += 3;
+            break;
+        case TRIT:
+            DecodeTritBlock(val.num_bits);
+            vals_decoded += 5;
+            break;
+        case JUST_BITS:
+            val.bit_value = StreamColorBits(val.num_bits);
+            ResultEmplaceBack(val);
+            vals_decoded++;
+            break;
+        }
+    }
+}
+
+void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) {
+    uint num_values = 0;
+    for (uint i = 0; i < num_partitions; i++) {
+        num_values += ((modes[i] >> 2) + 1) << 1;
+    }
+    int range = 256;
+    while (--range > 0) {
+        EncodingData val = encoding_values[range];
+        uint bit_length = GetBitLength(num_values, range);
+        if (bit_length <= color_data_bits) {
+            while (--range > 0) {
+                EncodingData newval = encoding_values[range];
+                if (newval.encoding != val.encoding && newval.num_bits != val.num_bits) {
+                    break;
+                }
+            }
+            ++range;
+            break;
+        }
+    }
+    DecodeIntegerSequence(range, num_values);
+    uint out_index = 0;
+    for (int itr = 0; itr < result_index; ++itr) {
+        if (out_index >= num_values) {
+            break;
+        }
+        EncodingData val = result_vector[itr];
+        uint bitlen = val.num_bits;
+        uint bitval = val.bit_value;
+        uint A = 0, B = 0, C = 0, D = 0;
+        A = ReplicateBitTo9((bitval & 1));
+        switch (val.encoding) {
+        case JUST_BITS:
+            color_values[out_index++] = FastReplicateTo8(bitval, bitlen);
+            break;
+        case TRIT: {
+            D = val.quint_trit_value;
+            switch (bitlen) {
+            case 1:
+                C = 204;
+                break;
+            case 2: {
+                C = 93;
+                uint b = (bitval >> 1) & 1;
+                B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
+                break;
+            }
+            case 3: {
+                C = 44;
+                uint cb = (bitval >> 1) & 3;
+                B = (cb << 7) | (cb << 2) | cb;
+                break;
+            }
+            case 4: {
+                C = 22;
+                uint dcb = (bitval >> 1) & 7;
+                B = (dcb << 6) | dcb;
+                break;
+            }
+            case 5: {
+                C = 11;
+                uint edcb = (bitval >> 1) & 0xF;
+                B = (edcb << 5) | (edcb >> 2);
+                break;
+            }
+            case 6: {
+                C = 5;
+                uint fedcb = (bitval >> 1) & 0x1F;
+                B = (fedcb << 4) | (fedcb >> 4);
+                break;
+            }
+            }
+            break;
+        }
+        case QUINT: {
+            D = val.quint_trit_value;
+            switch (bitlen) {
+            case 1:
+                C = 113;
+                break;
+            case 2: {
+                C = 54;
+                uint b = (bitval >> 1) & 1;
+                B = (b << 8) | (b << 3) | (b << 2);
+                break;
+            }
+            case 3: {
+                C = 26;
+                uint cb = (bitval >> 1) & 3;
+                B = (cb << 7) | (cb << 1) | (cb >> 1);
+                break;
+            }
+            case 4: {
+                C = 13;
+                uint dcb = (bitval >> 1) & 7;
+                B = (dcb << 6) | (dcb >> 1);
+                break;
+            }
+            case 5: {
+                C = 6;
+                uint edcb = (bitval >> 1) & 0xF;
+                B = (edcb << 5) | (edcb >> 3);
+                break;
+            }
+            }
+            break;
+        }
+        }
+        if (val.encoding != JUST_BITS) {
+            uint T = (D * C) + B;
+            T ^= A;
+            T = (A & 0x80) | (T >> 2);
+            color_values[out_index++] = T;
+        }
+    }
+}
+
+ivec2 BitTransferSigned(int a, int b) {
+    ivec2 transferred;
+    transferred.y = b >> 1;
+    transferred.y |= a & 0x80;
+    transferred.x = a >> 1;
+    transferred.x &= 0x3F;
+    if ((transferred.x & 0x20) > 0) {
+        transferred.x -= 0x40;
+    }
+    return transferred;
+}
+
+uvec4 ClampByte(ivec4 color) {
+    for (uint i = 0; i < 4; ++i) {
+        color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
+    }
+    return uvec4(color);
+}
+
+ivec4 BlueContract(int a, int r, int g, int b) {
+    return ivec4(a, (r + b) >> 1, (g + b) >> 1, b);
+}
+
+void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) {
+#define READ_UINT_VALUES(N)                                                                        \
+    uint v[N];                                                                                     \
+    for (uint i = 0; i < N; i++) {                                                                 \
+        v[i] = color_values[colvals_index++];                                                      \
+    }
+
+#define READ_INT_VALUES(N)                                                                         \
+    int v[N];                                                                                      \
+    for (uint i = 0; i < N; i++) {                                                                 \
+        v[i] = int(color_values[colvals_index++]);                                                 \
+    }
+
+    switch (color_endpoint_mode) {
+    case 0: {
+        READ_UINT_VALUES(2)
+        ep1 = uvec4(0xFF, v[0], v[0], v[0]);
+        ep2 = uvec4(0xFF, v[1], v[1], v[1]);
+        break;
+    }
+    case 1: {
+        READ_UINT_VALUES(2)
+        uint L0 = (v[0] >> 2) | (v[1] & 0xC0);
+        uint L1 = max(L0 + (v[1] & 0x3F), 0xFFU);
+        ep1 = uvec4(0xFF, L0, L0, L0);
+        ep2 = uvec4(0xFF, L1, L1, L1);
+        break;
+    }
+    case 4: {
+        READ_UINT_VALUES(4)
+        ep1 = uvec4(v[2], v[0], v[0], v[0]);
+        ep2 = uvec4(v[3], v[1], v[1], v[1]);
+        break;
+    }
+    case 5: {
+        READ_INT_VALUES(4)
+        ivec2 transferred = BitTransferSigned(v[1], v[0]);
+        v[1] = transferred.x;
+        v[0] = transferred.y;
+        transferred = BitTransferSigned(v[3], v[2]);
+        v[3] = transferred.x;
+        v[2] = transferred.y;
+        ep1 = ClampByte(ivec4(v[2], v[0], v[0], v[0]));
+        ep2 = ClampByte(ivec4(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]));
+        break;
+    }
+    case 6: {
+        READ_UINT_VALUES(4)
+        ep1 = uvec4(0xFF, (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8);
+        ep2 = uvec4(0xFF, v[0], v[1], v[2]);
+        break;
+    }
+    case 8: {
+        READ_UINT_VALUES(6)
+        if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) {
+            ep1 = uvec4(0xFF, v[0], v[2], v[4]);
+            ep2 = uvec4(0xFF, v[1], v[3], v[5]);
+        } else {
+            ep1 = uvec4(BlueContract(0xFF, int(v[1]), int(v[3]), int(v[5])));
+            ep2 = uvec4(BlueContract(0xFF, int(v[0]), int(v[2]), int(v[4])));
+        }
+        break;
+    }
+    case 9: {
+        READ_INT_VALUES(6)
+        ivec2 transferred = BitTransferSigned(v[1], v[0]);
+        v[1] = transferred.x;
+        v[0] = transferred.y;
+        transferred = BitTransferSigned(v[3], v[2]);
+        v[3] = transferred.x;
+        v[2] = transferred.y;
+        transferred = BitTransferSigned(v[5], v[4]);
+        v[5] = transferred.x;
+        v[4] = transferred.y;
+        if ((v[1] + v[3] + v[5]) >= 0) {
+            ep1 = ClampByte(ivec4(0xFF, v[0], v[2], v[4]));
+            ep2 = ClampByte(ivec4(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]));
+        } else {
+            ep1 = ClampByte(BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]));
+            ep2 = ClampByte(BlueContract(0xFF, v[0], v[2], v[4]));
+        }
+        break;
+    }
+    case 10: {
+        READ_UINT_VALUES(6)
+        ep1 = uvec4(v[4], (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8);
+        ep2 = uvec4(v[5], v[0], v[1], v[2]);
+        break;
+    }
+    case 12: {
+        READ_UINT_VALUES(8)
+        if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) {
+            ep1 = uvec4(v[6], v[0], v[2], v[4]);
+            ep2 = uvec4(v[7], v[1], v[3], v[5]);
+        } else {
+            ep1 = uvec4(BlueContract(int(v[7]), int(v[1]), int(v[3]), int(v[5])));
+            ep2 = uvec4(BlueContract(int(v[6]), int(v[0]), int(v[2]), int(v[4])));
+        }
+        break;
+    }
+    case 13: {
+        READ_INT_VALUES(8)
+        ivec2 transferred = BitTransferSigned(v[1], v[0]);
+        v[1] = transferred.x;
+        v[0] = transferred.y;
+        transferred = BitTransferSigned(v[3], v[2]);
+        v[3] = transferred.x;
+        v[2] = transferred.y;
+
+        transferred = BitTransferSigned(v[5], v[4]);
+        v[5] = transferred.x;
+        v[4] = transferred.y;
+
+        transferred = BitTransferSigned(v[7], v[6]);
+        v[7] = transferred.x;
+        v[6] = transferred.y;
+
+        if ((v[1] + v[3] + v[5]) >= 0) {
+            ep1 = ClampByte(ivec4(v[6], v[0], v[2], v[4]));
+            ep2 = ClampByte(ivec4(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]));
+        } else {
+            ep1 = ClampByte(BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]));
+            ep2 = ClampByte(BlueContract(v[6], v[0], v[2], v[4]));
+        }
+        break;
+    }
+    default: {
+        // HDR mode, or more likely a bug computing the color_endpoint_mode
+        ep1 = uvec4(0xFF, 0xFF, 0, 0);
+        ep2 = uvec4(0xFF, 0xFF, 0, 0);
+        break;
+    }
+    }
+#undef READ_UINT_VALUES
+#undef READ_INT_VALUES
+}
+
+uint UnquantizeTexelWeight(EncodingData val) {
+    uint bitval = val.bit_value;
+    uint bitlen = val.num_bits;
+    uint A = ReplicateBitTo7((bitval & 1));
+    uint B = 0, C = 0, D = 0;
+    uint result = 0;
+    switch (val.encoding) {
+    case JUST_BITS:
+        result = FastReplicateTo6(bitval, bitlen);
+        break;
+    case TRIT: {
+        D = val.quint_trit_value;
+        switch (bitlen) {
+        case 0: {
+            uint results[3] = {0, 32, 63};
+            result = results[D];
+            break;
+        }
+        case 1: {
+            C = 50;
+            break;
+        }
+        case 2: {
+            C = 23;
+            uint b = (bitval >> 1) & 1;
+            B = (b << 6) | (b << 2) | b;
+            break;
+        }
+        case 3: {
+            C = 11;
+            uint cb = (bitval >> 1) & 3;
+            B = (cb << 5) | cb;
+            break;
+        }
+        default:
+            break;
+        }
+        break;
+    }
+    case QUINT: {
+        D = val.quint_trit_value;
+        switch (bitlen) {
+        case 0: {
+            uint results[5] = {0, 16, 32, 47, 63};
+            result = results[D];
+            break;
+        }
+        case 1: {
+            C = 28;
+            break;
+        }
+        case 2: {
+            C = 13;
+            uint b = (bitval >> 1) & 1;
+            B = (b << 6) | (b << 1);
+            break;
+        }
+        }
+        break;
+    }
+    }
+    if (val.encoding != JUST_BITS && bitlen > 0) {
+        result = D * C + B;
+        result ^= A;
+        result = (A & 0x20) | (result >> 2);
+    }
+    if (result > 32) {
+        result += 1;
+    }
+    return result;
+}
+
+void UnquantizeTexelWeights(bool dual_plane, uvec2 size) {
+    uint weight_idx = 0;
+    uint unquantized[2][144];
+    uint area = size.x * size.y;
+    for (uint itr = 0; itr < texel_vector_index; itr++) {
+        unquantized[0][weight_idx] = UnquantizeTexelWeight(texel_vector[itr]);
+        if (dual_plane) {
+            ++itr;
+            unquantized[1][weight_idx] = UnquantizeTexelWeight(texel_vector[itr]);
+            if (itr == texel_vector_index) {
+                break;
+            }
+        }
+        if (++weight_idx >= (area))
+            break;
+    }
+
+    const uint Ds = uint((block_dims.x * 0.5f + 1024) / (block_dims.x - 1));
+    const uint Dt = uint((block_dims.y * 0.5f + 1024) / (block_dims.y - 1));
+    const uint k_plane_scale = dual_plane ? 2 : 1;
+    for (uint plane = 0; plane < k_plane_scale; plane++) {
+        for (uint t = 0; t < block_dims.y; t++) {
+            for (uint s = 0; s < block_dims.x; s++) {
+                uint cs = Ds * s;
+                uint ct = Dt * t;
+                uint gs = (cs * (size.x - 1) + 32) >> 6;
+                uint gt = (ct * (size.y - 1) + 32) >> 6;
+                uint js = gs >> 4;
+                uint fs = gs & 0xF;
+                uint jt = gt >> 4;
+                uint ft = gt & 0x0F;
+                uint w11 = (fs * ft + 8) >> 4;
+                uint w10 = ft - w11;
+                uint w01 = fs - w11;
+                uint w00 = 16 - fs - ft + w11;
+                uvec4 w = uvec4(w00, w01, w10, w11);
+                uint v0 = jt * size.x + js;
+
+                uvec4 p = uvec4(0);
+                if (v0 < area) {
+                    p.x = unquantized[plane][v0];
+                }
+                if ((v0 + 1) < (area)) {
+                    p.y = unquantized[plane][v0 + 1];
+                }
+                if ((v0 + size.x) < (area)) {
+                    p.z = unquantized[plane][(v0 + size.x)];
+                }
+                if ((v0 + size.x + 1) < (area)) {
+                    p.w = unquantized[plane][(v0 + size.x + 1)];
+                }
+                unquantized_texel_weights[plane][t * block_dims.x + s] = (uint(dot(p, w)) + 8) >> 4;
+            }
+        }
+    }
+}
+
+int FindLayout(uint mode) {
+    if ((mode & 3) != 0) {
+        if ((mode & 8) != 0) {
+            if ((mode & 4) != 0) {
+                if ((mode & 0x100) != 0) {
+                    return 4;
+                }
+                return 3;
+            }
+            return 2;
+        }
+        if ((mode & 4) != 0) {
+            return 1;
+        }
+        return 0;
+    }
+    if ((mode & 0x100) != 0) {
+        if ((mode & 0x80) != 0) {
+            if ((mode & 0x20) != 0) {
+                return 8;
+            }
+            return 7;
+        }
+        return 9;
+    }
+    if ((mode & 0x80) != 0) {
+        return 6;
+    }
+    return 5;
+}
+
+TexelWeightParams DecodeBlockInfo(uint block_index) {
+    TexelWeightParams params = TexelWeightParams(uvec2(0), 0, false, false, false, false);
+    uint mode = StreamBits(11);
+    if ((mode & 0x1ff) == 0x1fc) {
+        if ((mode & 0x200) != 0) {
+            params.void_extent_hdr = true;
+        } else {
+            params.void_extent_ldr = true;
+        }
+        if ((mode & 0x400) == 0 || StreamBits(1) == 0) {
+            params.error_state = true;
+        }
+        return params;
+    }
+    if ((mode & 0xf) == 0) {
+        params.error_state = true;
+        return params;
+    }
+    if ((mode & 3) == 0 && (mode & 0x1c0) == 0x1c0) {
+        params.error_state = true;
+        return params;
+    }
+    uint A, B;
+    uint mode_layout = FindLayout(mode);
+    switch (mode_layout) {
+    case 0:
+        A = (mode >> 5) & 0x3;
+        B = (mode >> 7) & 0x3;
+        params.size = uvec2(B + 4, A + 2);
+        break;
+    case 1:
+        A = (mode >> 5) & 0x3;
+        B = (mode >> 7) & 0x3;
+        params.size = uvec2(B + 8, A + 2);
+        break;
+    case 2:
+        A = (mode >> 5) & 0x3;
+        B = (mode >> 7) & 0x3;
+        params.size = uvec2(A + 2, B + 8);
+        break;
+    case 3:
+        A = (mode >> 5) & 0x3;
+        B = (mode >> 7) & 0x1;
+        params.size = uvec2(A + 2, B + 6);
+        break;
+    case 4:
+        A = (mode >> 5) & 0x3;
+        B = (mode >> 7) & 0x1;
+        params.size = uvec2(B + 2, A + 2);
+        break;
+    case 5:
+        A = (mode >> 5) & 0x3;
+        params.size = uvec2(12, A + 2);
+        break;
+    case 6:
+        A = (mode >> 5) & 0x3;
+        params.size = uvec2(A + 2, 12);
+        break;
+    case 7:
+        params.size = uvec2(6, 10);
+        break;
+    case 8:
+        params.size = uvec2(10, 6);
+        break;
+    case 9:
+        A = (mode >> 5) & 0x3;
+        B = (mode >> 9) & 0x3;
+        params.size = uvec2(A + 6, B + 6);
+        break;
+    default:
+        params.error_state = true;
+        break;
+    }
+    params.dual_plane = (mode_layout != 9) && ((mode & 0x400) != 0);
+    uint weight_index = (mode & 0x10) != 0 ? 1 : 0;
+    if (mode_layout < 5) {
+        weight_index |= (mode & 0x3) << 1;
+    } else {
+        weight_index |= (mode & 0xc) >> 1;
+    }
+    weight_index -= 2;
+    if ((mode_layout != 9) && ((mode & 0x200) != 0)) {
+        const int max_weights[6] = int[6](9, 11, 15, 19, 23, 31);
+        params.max_weight = max_weights[weight_index];
+    } else {
+        const int max_weights[6] = int[6](1, 2, 3, 4, 5, 7);
+        params.max_weight = max_weights[weight_index];
+    }
+    return params;
+}
+
+void FillError(ivec3 coord) {
+    for (uint j = 0; j < block_dims.y; j++) {
+        for (uint i = 0; i < block_dims.x; i++) {
+            imageStore(dest_image, coord + ivec3(i, j, 0), vec4(1.0, 1.0, 0.0, 1.0));
+        }
+    }
+}
+
+void FillVoidExtentLDR(ivec3 coord) {
+    StreamBits(52);
+    uint r_u = StreamBits(16);
+    uint g_u = StreamBits(16);
+    uint b_u = StreamBits(16);
+    uint a_u = StreamBits(16);
+    float a = float(a_u) / 65535.0f;
+    float r = float(r_u) / 65535.0f;
+    float g = float(g_u) / 65535.0f;
+    float b = float(b_u) / 65535.0f;
+    for (uint j = 0; j < block_dims.y; j++) {
+        for (uint i = 0; i < block_dims.x; i++) {
+            imageStore(dest_image, coord + ivec3(i, j, 0), vec4(r, g, b, a));
+        }
+    }
+}
+
+void DecompressBlock(ivec3 coord, uint block_index) {
+    TexelWeightParams params = DecodeBlockInfo(block_index);
+    if (params.error_state) {
+        FillError(coord);
+        return;
+    }
+    if (params.void_extent_hdr) {
+        FillError(coord);
+        return;
+    }
+    if (params.void_extent_ldr) {
+        FillVoidExtentLDR(coord);
+        return;
+    }
+    if ((params.size.x > block_dims.x) || (params.size.y > block_dims.y)) {
+        FillError(coord);
+        return;
+    }
+    uint num_partitions = StreamBits(2) + 1;
+    if (num_partitions > 4 || (num_partitions == 4 && params.dual_plane)) {
+        FillError(coord);
+        return;
+    }
+    int plane_index = -1;
+    uint partition_index = 1;
+    uvec4 color_endpoint_mode = uvec4(0);
+    uint ced_pointer = 0;
+    uint base_cem = 0;
+    if (num_partitions == 1) {
+        color_endpoint_mode.x = StreamBits(4);
+        partition_index = 0;
+    } else {
+        partition_index = StreamBits(10);
+        base_cem = StreamBits(6);
+    }
+    uint base_mode = base_cem & 3;
+    uint weight_bits = GetPackedBitSize(params.size, params.dual_plane, params.max_weight);
+    uint remaining_bits = 128 - weight_bits - total_bitsread;
+    uint extra_cem_bits = 0;
+    if (base_mode > 0) {
+        switch (num_partitions) {
+        case 2:
+            extra_cem_bits += 2;
+            break;
+        case 3:
+            extra_cem_bits += 5;
+            break;
+        case 4:
+            extra_cem_bits += 8;
+            break;
+        default:
+            return;
+        }
+    }
+    remaining_bits -= extra_cem_bits;
+    uint plane_selector_bits = 0;
+    if (params.dual_plane) {
+        plane_selector_bits = 2;
+    }
+    remaining_bits -= plane_selector_bits;
+    if (remaining_bits > 128) {
+        // Bad data, more remaining bits than 4 bytes
+        // return early
+        return;
+    }
+    // Read color data...
+    uint color_data_bits = remaining_bits;
+    while (remaining_bits > 0) {
+        int nb = int(min(remaining_bits, 8U));
+        uint b = StreamBits(nb);
+        color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb));
+        ++ced_pointer;
+        remaining_bits -= nb;
+    }
+    plane_index = int(StreamBits(plane_selector_bits));
+    if (base_mode > 0) {
+        uint extra_cem = StreamBits(extra_cem_bits);
+        uint cem = (extra_cem << 6) | base_cem;
+        cem >>= 2;
+        uvec4 C = uvec4(0);
+        for (uint i = 0; i < num_partitions; i++) {
+            C[i] = (cem & 1);
+            cem >>= 1;
+        }
+        uvec4 M = uvec4(0);
+        for (uint i = 0; i < num_partitions; i++) {
+            M[i] = cem & 3;
+            cem >>= 2;
+        }
+        for (uint i = 0; i < num_partitions; i++) {
+            color_endpoint_mode[i] = base_mode;
+            if (C[i] == 0) {
+                --color_endpoint_mode[i];
+            }
+            color_endpoint_mode[i] <<= 2;
+            color_endpoint_mode[i] |= M[i];
+        }
+    } else if (num_partitions > 1) {
+        uint cem = base_cem >> 2;
+        for (uint i = 0; i < num_partitions; i++) {
+            color_endpoint_mode[i] = cem;
+        }
+    }
+    DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits);
+
+    uvec4 endpoints[4][2];
+    for (uint i = 0; i < num_partitions; i++) {
+        ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_endpoint_mode[i]);
+    }
+
+    for (uint i = 0; i < 16; i++) {
+        texel_weight_data[i] = local_buff[i];
+    }
+    for (uint i = 0; i < 8; i++) {
+#define REVERSE_BYTE(b) ((b * 0x0802U & 0x22110U) | (b * 0x8020U & 0x88440U)) * 0x10101U >> 16
+        uint a = REVERSE_BYTE(texel_weight_data[i]);
+        uint b = REVERSE_BYTE(texel_weight_data[15 - i]);
+#undef REVERSE_BYTE
+        texel_weight_data[i] = uint(bitfieldExtract(b, 0, 8));
+        texel_weight_data[15 - i] = uint(bitfieldExtract(a, 0, 8));
+    }
+    uint clear_byte_start =
+        (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) >> 3) + 1;
+    texel_weight_data[clear_byte_start - 1] =
+        texel_weight_data[clear_byte_start - 1] &
+        uint(
+            ((1 << (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) % 8)) - 1));
+    for (uint i = 0; i < 16 - clear_byte_start; i++) {
+        texel_weight_data[clear_byte_start + i] = 0U;
+    }
+    texel_flag = true; // use texel "vector" and bit stream in integer decoding
+    DecodeIntegerSequence(params.max_weight, GetNumWeightValues(params.size, params.dual_plane));
+
+    UnquantizeTexelWeights(params.dual_plane, params.size);
+
+    for (uint j = 0; j < block_dims.y; j++) {
+        for (uint i = 0; i < block_dims.x; i++) {
+            uint local_partition = Select2DPartition(partition_index, i, j, num_partitions,
+                                                     (block_dims.y * block_dims.x) < 32);
+            vec4 p;
+            uvec4 C0 = ReplicateByteTo16(endpoints[local_partition][0]);
+            uvec4 C1 = ReplicateByteTo16(endpoints[local_partition][1]);
+            uvec4 plane_vec = uvec4(0);
+            uvec4 weight_vec = uvec4(0);
+            for (uint c = 0; c < 4; c++) {
+                if (params.dual_plane && (((plane_index + 1) & 3) == c)) {
+                    plane_vec[c] = 1;
+                }
+                weight_vec[c] = unquantized_texel_weights[plane_vec[c]][j * block_dims.x + i];
+            }
+            vec4 Cf = vec4((C0 * (uvec4(64) - weight_vec) + C1 * weight_vec + uvec4(32)) / 64);
+            p = (Cf / 65535.0);
+            imageStore(dest_image, coord + ivec3(i, j, 0), p.gbar);
+        }
+    }
+}
+
+void main() {
+    uvec3 pos = gl_GlobalInvocationID;
+    pos.x <<= bytes_per_block_log2;
+
+    // Read as soon as possible due to its latency
+    const uint swizzle = SwizzleOffset(pos.xy);
+
+    const uint block_y = pos.y >> GOB_SIZE_Y_SHIFT;
+
+    uint offset = 0;
+    offset += pos.z * layer_stride;
+    offset += (block_y >> block_height) * block_size;
+    offset += (block_y & block_height_mask) << GOB_SIZE_SHIFT;
+    offset += (pos.x >> GOB_SIZE_X_SHIFT) << x_shift;
+    offset += swizzle;
+
+    const ivec3 coord = ivec3(gl_GlobalInvocationID * uvec3(block_dims, 1));
+    uint block_index =
+        pos.z * gl_WorkGroupSize.x * gl_WorkGroupSize.y + pos.y * gl_WorkGroupSize.x + pos.x;
+
+    current_index = 0;
+    bitsread = 0;
+    for (int i = 0; i < 16; i++) {
+        local_buff[i] = ReadTexel(offset + i);
+    }
+    DecompressBlock(coord, block_index);
+}
diff --git a/src/video_core/host_shaders/source_shader.h.in b/src/video_core/host_shaders/source_shader.h.in
index ccdb0d2a9..929dec39b 100644
--- a/src/video_core/host_shaders/source_shader.h.in
+++ b/src/video_core/host_shaders/source_shader.h.in
@@ -4,6 +4,8 @@
 
 namespace HostShaders {
 
-constexpr std::string_view @CONTENTS_NAME@ = R"(@CONTENTS@)";
+constexpr std::string_view @CONTENTS_NAME@ = {
+@CONTENTS@
+};
 
 } // namespace HostShaders
diff --git a/src/video_core/renderer_opengl/gl_texture_cache.cpp b/src/video_core/renderer_opengl/gl_texture_cache.cpp
index e028677e9..623b43d8a 100644
--- a/src/video_core/renderer_opengl/gl_texture_cache.cpp
+++ b/src/video_core/renderer_opengl/gl_texture_cache.cpp
@@ -307,7 +307,8 @@ void ApplySwizzle(GLuint handle, PixelFormat format, std::array<SwizzleSource, 4
 
 [[nodiscard]] bool CanBeAccelerated(const TextureCacheRuntime& runtime,
                                     const VideoCommon::ImageInfo& info) {
-    // Disable accelerated uploads for now as they don't implement swizzled uploads
+    return !runtime.HasNativeASTC() && IsPixelFormatASTC(info.format);
+    // Disable other accelerated uploads for now as they don't implement swizzled uploads
     return false;
     switch (info.type) {
     case ImageType::e2D:
@@ -569,7 +570,11 @@ void TextureCacheRuntime::AccelerateImageUpload(Image& image, const ImageBufferM
                                                 std::span<const SwizzleParameters> swizzles) {
     switch (image.info.type) {
     case ImageType::e2D:
-        return util_shaders.BlockLinearUpload2D(image, map, swizzles);
+        if (IsPixelFormatASTC(image.info.format)) {
+            return util_shaders.ASTCDecode(image, map, swizzles);
+        } else {
+            return util_shaders.BlockLinearUpload2D(image, map, swizzles);
+        }
     case ImageType::e3D:
         return util_shaders.BlockLinearUpload3D(image, map, swizzles);
     case ImageType::Linear:
@@ -599,6 +604,10 @@ FormatProperties TextureCacheRuntime::FormatInfo(ImageType type, GLenum internal
     }
 }
 
+bool TextureCacheRuntime::HasNativeASTC() const noexcept {
+    return device.HasASTC();
+}
+
 TextureCacheRuntime::StagingBuffers::StagingBuffers(GLenum storage_flags_, GLenum map_flags_)
     : storage_flags{storage_flags_}, map_flags{map_flags_} {}
 
diff --git a/src/video_core/renderer_opengl/gl_texture_cache.h b/src/video_core/renderer_opengl/gl_texture_cache.h
index 3fbaa102f..3c871541b 100644
--- a/src/video_core/renderer_opengl/gl_texture_cache.h
+++ b/src/video_core/renderer_opengl/gl_texture_cache.h
@@ -95,6 +95,8 @@ public:
         return has_broken_texture_view_formats;
     }
 
+    bool HasNativeASTC() const noexcept;
+
 private:
     struct StagingBuffers {
         explicit StagingBuffers(GLenum storage_flags_, GLenum map_flags_);
diff --git a/src/video_core/renderer_opengl/util_shaders.cpp b/src/video_core/renderer_opengl/util_shaders.cpp
index 2fe4799bc..47fddcb6e 100644
--- a/src/video_core/renderer_opengl/util_shaders.cpp
+++ b/src/video_core/renderer_opengl/util_shaders.cpp
@@ -2,7 +2,6 @@
 // Licensed under GPLv2 or any later version
 // Refer to the license.txt file included.
 
-#include <bit>
 #include <span>
 #include <string_view>
 
@@ -11,6 +10,7 @@
 #include "common/assert.h"
 #include "common/common_types.h"
 #include "common/div_ceil.h"
+#include "video_core/host_shaders/astc_decoder_comp.h"
 #include "video_core/host_shaders/block_linear_unswizzle_2d_comp.h"
 #include "video_core/host_shaders/block_linear_unswizzle_3d_comp.h"
 #include "video_core/host_shaders/opengl_copy_bc4_comp.h"
@@ -20,16 +20,18 @@
 #include "video_core/renderer_opengl/gl_shader_manager.h"
 #include "video_core/renderer_opengl/gl_texture_cache.h"
 #include "video_core/renderer_opengl/util_shaders.h"
-#include "video_core/surface.h"
 #include "video_core/texture_cache/accelerated_swizzle.h"
 #include "video_core/texture_cache/types.h"
 #include "video_core/texture_cache/util.h"
+#include "video_core/textures/astc.h"
 #include "video_core/textures/decoders.h"
 
 namespace OpenGL {
 
 using namespace HostShaders;
+using namespace Tegra::Texture::ASTC;
 
+using VideoCommon::Extent2D;
 using VideoCommon::Extent3D;
 using VideoCommon::ImageCopy;
 using VideoCommon::ImageType;
@@ -57,7 +59,7 @@ size_t NumPixelsInCopy(const VideoCommon::ImageCopy& copy) {
 } // Anonymous namespace
 
 UtilShaders::UtilShaders(ProgramManager& program_manager_)
-    : program_manager{program_manager_},
+    : program_manager{program_manager_}, astc_decoder_program(MakeProgram(ASTC_DECODER_COMP)),
       block_linear_unswizzle_2d_program(MakeProgram(BLOCK_LINEAR_UNSWIZZLE_2D_COMP)),
       block_linear_unswizzle_3d_program(MakeProgram(BLOCK_LINEAR_UNSWIZZLE_3D_COMP)),
       pitch_unswizzle_program(MakeProgram(PITCH_UNSWIZZLE_COMP)),
@@ -65,11 +67,79 @@ UtilShaders::UtilShaders(ProgramManager& program_manager_)
       copy_bc4_program(MakeProgram(OPENGL_COPY_BC4_COMP)) {
     const auto swizzle_table = Tegra::Texture::MakeSwizzleTable();
     swizzle_table_buffer.Create();
+    astc_buffer.Create();
     glNamedBufferStorage(swizzle_table_buffer.handle, sizeof(swizzle_table), &swizzle_table, 0);
+    glNamedBufferStorage(astc_buffer.handle, sizeof(ASTC_BUFFER_DATA), &ASTC_BUFFER_DATA, 0);
 }
 
 UtilShaders::~UtilShaders() = default;
 
+void UtilShaders::ASTCDecode(Image& image, const ImageBufferMap& map,
+                             std::span<const VideoCommon::SwizzleParameters> swizzles) {
+    static constexpr GLuint BINDING_SWIZZLE_BUFFER = 0;
+    static constexpr GLuint BINDING_INPUT_BUFFER = 1;
+    static constexpr GLuint BINDING_ENC_BUFFER = 2;
+
+    static constexpr GLuint BINDING_6_TO_8_BUFFER = 3;
+    static constexpr GLuint BINDING_7_TO_8_BUFFER = 4;
+    static constexpr GLuint BINDING_8_TO_8_BUFFER = 5;
+    static constexpr GLuint BINDING_BYTE_TO_16_BUFFER = 6;
+
+    static constexpr GLuint BINDING_OUTPUT_IMAGE = 0;
+
+    const Extent2D tile_size{
+        .width = VideoCore::Surface::DefaultBlockWidth(image.info.format),
+        .height = VideoCore::Surface::DefaultBlockHeight(image.info.format),
+    };
+    program_manager.BindHostCompute(astc_decoder_program.handle);
+    glBindBufferBase(GL_SHADER_STORAGE_BUFFER, BINDING_SWIZZLE_BUFFER, swizzle_table_buffer.handle);
+    glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_ENC_BUFFER, astc_buffer.handle,
+                      offsetof(AstcBufferData, encoding_values),
+                      sizeof(AstcBufferData::encoding_values));
+    glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_6_TO_8_BUFFER, astc_buffer.handle,
+                      offsetof(AstcBufferData, replicate_6_to_8),
+                      sizeof(AstcBufferData::replicate_6_to_8));
+    glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_7_TO_8_BUFFER, astc_buffer.handle,
+                      offsetof(AstcBufferData, replicate_7_to_8),
+                      sizeof(AstcBufferData::replicate_7_to_8));
+    glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_8_TO_8_BUFFER, astc_buffer.handle,
+                      offsetof(AstcBufferData, replicate_8_to_8),
+                      sizeof(AstcBufferData::replicate_8_to_8));
+    glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_BYTE_TO_16_BUFFER, astc_buffer.handle,
+                      offsetof(AstcBufferData, replicate_byte_to_16),
+                      sizeof(AstcBufferData::replicate_byte_to_16));
+
+    glFlushMappedNamedBufferRange(map.buffer, map.offset, image.guest_size_bytes);
+    glUniform2ui(1, tile_size.width, tile_size.height);
+    // Ensure buffer data is valid before dispatching
+    glFlush();
+    for (const SwizzleParameters& swizzle : swizzles) {
+        const size_t input_offset = swizzle.buffer_offset + map.offset;
+        const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 32U);
+        const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 32U);
+
+        const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info);
+        ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0}));
+        ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0}));
+
+        glUniform1ui(2, params.bytes_per_block_log2);
+        glUniform1ui(3, params.layer_stride);
+        glUniform1ui(4, params.block_size);
+        glUniform1ui(5, params.x_shift);
+        glUniform1ui(6, params.block_height);
+        glUniform1ui(7, params.block_height_mask);
+
+        glBindImageTexture(BINDING_OUTPUT_IMAGE, image.StorageHandle(), swizzle.level, GL_TRUE, 0,
+                           GL_WRITE_ONLY, GL_RGBA8);
+        // ASTC texture data
+        glBindBufferRange(GL_SHADER_STORAGE_BUFFER, BINDING_INPUT_BUFFER, map.buffer, input_offset,
+                          image.guest_size_bytes - swizzle.buffer_offset);
+
+        glDispatchCompute(num_dispatches_x, num_dispatches_y, image.info.resources.layers);
+    }
+    program_manager.RestoreGuestCompute();
+}
+
 void UtilShaders::BlockLinearUpload2D(Image& image, const ImageBufferMap& map,
                                       std::span<const SwizzleParameters> swizzles) {
     static constexpr Extent3D WORKGROUP_SIZE{32, 32, 1};
diff --git a/src/video_core/renderer_opengl/util_shaders.h b/src/video_core/renderer_opengl/util_shaders.h
index 93b009743..53d65f368 100644
--- a/src/video_core/renderer_opengl/util_shaders.h
+++ b/src/video_core/renderer_opengl/util_shaders.h
@@ -40,6 +40,9 @@ public:
     explicit UtilShaders(ProgramManager& program_manager);
     ~UtilShaders();
 
+    void ASTCDecode(Image& image, const ImageBufferMap& map,
+                    std::span<const VideoCommon::SwizzleParameters> swizzles);
+
     void BlockLinearUpload2D(Image& image, const ImageBufferMap& map,
                              std::span<const VideoCommon::SwizzleParameters> swizzles);
 
@@ -59,7 +62,9 @@ private:
     ProgramManager& program_manager;
 
     OGLBuffer swizzle_table_buffer;
+    OGLBuffer astc_buffer;
 
+    OGLProgram astc_decoder_program;
     OGLProgram block_linear_unswizzle_2d_program;
     OGLProgram block_linear_unswizzle_3d_program;
     OGLProgram pitch_unswizzle_program;
diff --git a/src/video_core/renderer_vulkan/maxwell_to_vk.cpp b/src/video_core/renderer_vulkan/maxwell_to_vk.cpp
index 19aaf034f..f088447e9 100644
--- a/src/video_core/renderer_vulkan/maxwell_to_vk.cpp
+++ b/src/video_core/renderer_vulkan/maxwell_to_vk.cpp
@@ -166,7 +166,7 @@ struct FormatTuple {
     {VK_FORMAT_R16G16_SINT, Attachable | Storage},             // R16G16_SINT
     {VK_FORMAT_R16G16_SNORM, Attachable | Storage},            // R16G16_SNORM
     {VK_FORMAT_UNDEFINED},                                     // R32G32B32_FLOAT
-    {VK_FORMAT_R8G8B8A8_SRGB, Attachable},                     // A8B8G8R8_SRGB
+    {VK_FORMAT_A8B8G8R8_SRGB_PACK32, Attachable},              // A8B8G8R8_SRGB
     {VK_FORMAT_R8G8_UNORM, Attachable | Storage},              // R8G8_UNORM
     {VK_FORMAT_R8G8_SNORM, Attachable | Storage},              // R8G8_SNORM
     {VK_FORMAT_R8G8_SINT, Attachable | Storage},               // R8G8_SINT
diff --git a/src/video_core/renderer_vulkan/vk_compute_pass.cpp b/src/video_core/renderer_vulkan/vk_compute_pass.cpp
index 2f9a7b028..e11406e58 100644
--- a/src/video_core/renderer_vulkan/vk_compute_pass.cpp
+++ b/src/video_core/renderer_vulkan/vk_compute_pass.cpp
@@ -11,18 +11,39 @@
 #include "common/assert.h"
 #include "common/common_types.h"
 #include "common/div_ceil.h"
+#include "video_core/host_shaders/astc_decoder_comp_spv.h"
 #include "video_core/host_shaders/vulkan_quad_indexed_comp_spv.h"
 #include "video_core/host_shaders/vulkan_uint8_comp_spv.h"
 #include "video_core/renderer_vulkan/vk_compute_pass.h"
 #include "video_core/renderer_vulkan/vk_descriptor_pool.h"
 #include "video_core/renderer_vulkan/vk_scheduler.h"
 #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
+#include "video_core/renderer_vulkan/vk_texture_cache.h"
 #include "video_core/renderer_vulkan/vk_update_descriptor.h"
+#include "video_core/texture_cache/accelerated_swizzle.h"
+#include "video_core/texture_cache/types.h"
+#include "video_core/textures/astc.h"
+#include "video_core/textures/decoders.h"
 #include "video_core/vulkan_common/vulkan_device.h"
 #include "video_core/vulkan_common/vulkan_wrapper.h"
 
 namespace Vulkan {
+
+using Tegra::Texture::SWIZZLE_TABLE;
+using Tegra::Texture::ASTC::EncodingsValues;
+using namespace Tegra::Texture::ASTC;
+
 namespace {
+
+constexpr u32 ASTC_BINDING_INPUT_BUFFER = 0;
+constexpr u32 ASTC_BINDING_ENC_BUFFER = 1;
+constexpr u32 ASTC_BINDING_6_TO_8_BUFFER = 2;
+constexpr u32 ASTC_BINDING_7_TO_8_BUFFER = 3;
+constexpr u32 ASTC_BINDING_8_TO_8_BUFFER = 4;
+constexpr u32 ASTC_BINDING_BYTE_TO_16_BUFFER = 5;
+constexpr u32 ASTC_BINDING_SWIZZLE_BUFFER = 6;
+constexpr u32 ASTC_BINDING_OUTPUT_IMAGE = 7;
+
 VkPushConstantRange BuildComputePushConstantRange(std::size_t size) {
     return {
         .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
@@ -50,6 +71,67 @@ std::array<VkDescriptorSetLayoutBinding, 2> BuildInputOutputDescriptorSetBinding
     }};
 }
 
+std::array<VkDescriptorSetLayoutBinding, 8> BuildASTCDescriptorSetBindings() {
+    return {{
+        {
+            .binding = ASTC_BINDING_INPUT_BUFFER,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .descriptorCount = 1,
+            .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
+            .pImmutableSamplers = nullptr,
+        },
+        {
+            .binding = ASTC_BINDING_ENC_BUFFER,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .descriptorCount = 1,
+            .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
+            .pImmutableSamplers = nullptr,
+        },
+        {
+            .binding = ASTC_BINDING_6_TO_8_BUFFER,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .descriptorCount = 1,
+            .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
+            .pImmutableSamplers = nullptr,
+        },
+        {
+            .binding = ASTC_BINDING_7_TO_8_BUFFER,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .descriptorCount = 1,
+            .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
+            .pImmutableSamplers = nullptr,
+        },
+        {
+            .binding = ASTC_BINDING_8_TO_8_BUFFER,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .descriptorCount = 1,
+            .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
+            .pImmutableSamplers = nullptr,
+        },
+        {
+            .binding = ASTC_BINDING_BYTE_TO_16_BUFFER,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .descriptorCount = 1,
+            .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
+            .pImmutableSamplers = nullptr,
+        },
+        {
+            .binding = ASTC_BINDING_SWIZZLE_BUFFER,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .descriptorCount = 1,
+            .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
+            .pImmutableSamplers = nullptr,
+        },
+        {
+            .binding = ASTC_BINDING_OUTPUT_IMAGE,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
+            .descriptorCount = 1,
+            .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
+            .pImmutableSamplers = nullptr,
+        },
+    }};
+}
+
 VkDescriptorUpdateTemplateEntryKHR BuildInputOutputDescriptorUpdateTemplate() {
     return {
         .dstBinding = 0,
@@ -61,6 +143,94 @@ VkDescriptorUpdateTemplateEntryKHR BuildInputOutputDescriptorUpdateTemplate() {
     };
 }
 
+std::array<VkDescriptorUpdateTemplateEntryKHR, 8> BuildASTCPassDescriptorUpdateTemplateEntry() {
+    return {{
+        {
+            .dstBinding = ASTC_BINDING_INPUT_BUFFER,
+            .dstArrayElement = 0,
+            .descriptorCount = 1,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .offset = ASTC_BINDING_INPUT_BUFFER * sizeof(DescriptorUpdateEntry),
+            .stride = sizeof(DescriptorUpdateEntry),
+        },
+        {
+            .dstBinding = ASTC_BINDING_ENC_BUFFER,
+            .dstArrayElement = 0,
+            .descriptorCount = 1,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .offset = ASTC_BINDING_ENC_BUFFER * sizeof(DescriptorUpdateEntry),
+            .stride = sizeof(DescriptorUpdateEntry),
+        },
+        {
+            .dstBinding = ASTC_BINDING_6_TO_8_BUFFER,
+            .dstArrayElement = 0,
+            .descriptorCount = 1,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .offset = ASTC_BINDING_6_TO_8_BUFFER * sizeof(DescriptorUpdateEntry),
+            .stride = sizeof(DescriptorUpdateEntry),
+        },
+        {
+            .dstBinding = ASTC_BINDING_7_TO_8_BUFFER,
+            .dstArrayElement = 0,
+            .descriptorCount = 1,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .offset = ASTC_BINDING_7_TO_8_BUFFER * sizeof(DescriptorUpdateEntry),
+            .stride = sizeof(DescriptorUpdateEntry),
+        },
+        {
+            .dstBinding = ASTC_BINDING_8_TO_8_BUFFER,
+            .dstArrayElement = 0,
+            .descriptorCount = 1,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .offset = ASTC_BINDING_8_TO_8_BUFFER * sizeof(DescriptorUpdateEntry),
+            .stride = sizeof(DescriptorUpdateEntry),
+        },
+        {
+            .dstBinding = ASTC_BINDING_BYTE_TO_16_BUFFER,
+            .dstArrayElement = 0,
+            .descriptorCount = 1,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .offset = ASTC_BINDING_BYTE_TO_16_BUFFER * sizeof(DescriptorUpdateEntry),
+            .stride = sizeof(DescriptorUpdateEntry),
+        },
+        {
+            .dstBinding = ASTC_BINDING_SWIZZLE_BUFFER,
+            .dstArrayElement = 0,
+            .descriptorCount = 1,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
+            .offset = ASTC_BINDING_SWIZZLE_BUFFER * sizeof(DescriptorUpdateEntry),
+            .stride = sizeof(DescriptorUpdateEntry),
+        },
+        {
+            .dstBinding = ASTC_BINDING_OUTPUT_IMAGE,
+            .dstArrayElement = 0,
+            .descriptorCount = 1,
+            .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
+            .offset = ASTC_BINDING_OUTPUT_IMAGE * sizeof(DescriptorUpdateEntry),
+            .stride = sizeof(DescriptorUpdateEntry),
+        },
+    }};
+}
+
+struct AstcPushConstants {
+    std::array<u32, 2> blocks_dims;
+    u32 bytes_per_block_log2;
+    u32 layer_stride;
+    u32 block_size;
+    u32 x_shift;
+    u32 block_height;
+    u32 block_height_mask;
+};
+
+struct AstcBufferData {
+    decltype(SWIZZLE_TABLE) swizzle_table_buffer = SWIZZLE_TABLE;
+    decltype(EncodingsValues) encoding_values = EncodingsValues;
+    decltype(REPLICATE_6_BIT_TO_8_TABLE) replicate_6_to_8 = REPLICATE_6_BIT_TO_8_TABLE;
+    decltype(REPLICATE_7_BIT_TO_8_TABLE) replicate_7_to_8 = REPLICATE_7_BIT_TO_8_TABLE;
+    decltype(REPLICATE_8_BIT_TO_8_TABLE) replicate_8_to_8 = REPLICATE_8_BIT_TO_8_TABLE;
+    decltype(REPLICATE_BYTE_TO_16_TABLE) replicate_byte_to_16 = REPLICATE_BYTE_TO_16_TABLE;
+} constexpr ASTC_BUFFER_DATA;
+
 } // Anonymous namespace
 
 VKComputePass::VKComputePass(const Device& device, VKDescriptorPool& descriptor_pool,
@@ -238,4 +408,167 @@ std::pair<VkBuffer, VkDeviceSize> QuadIndexedPass::Assemble(
     return {staging.buffer, staging.offset};
 }
 
+ASTCDecoderPass::ASTCDecoderPass(const Device& device_, VKScheduler& scheduler_,
+                                 VKDescriptorPool& descriptor_pool_,
+                                 StagingBufferPool& staging_buffer_pool_,
+                                 VKUpdateDescriptorQueue& update_descriptor_queue_,
+                                 MemoryAllocator& memory_allocator_)
+    : VKComputePass(device_, descriptor_pool_, BuildASTCDescriptorSetBindings(),
+                    BuildASTCPassDescriptorUpdateTemplateEntry(),
+                    BuildComputePushConstantRange(sizeof(AstcPushConstants)),
+                    ASTC_DECODER_COMP_SPV),
+      device{device_}, scheduler{scheduler_}, staging_buffer_pool{staging_buffer_pool_},
+      update_descriptor_queue{update_descriptor_queue_}, memory_allocator{memory_allocator_} {}
+
+ASTCDecoderPass::~ASTCDecoderPass() = default;
+
+void ASTCDecoderPass::MakeDataBuffer() {
+    constexpr size_t TOTAL_BUFFER_SIZE = sizeof(ASTC_BUFFER_DATA) + sizeof(SWIZZLE_TABLE);
+    data_buffer = device.GetLogical().CreateBuffer(VkBufferCreateInfo{
+        .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
+        .pNext = nullptr,
+        .flags = 0,
+        .size = TOTAL_BUFFER_SIZE,
+        .usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
+        .sharingMode = VK_SHARING_MODE_EXCLUSIVE,
+        .queueFamilyIndexCount = 0,
+        .pQueueFamilyIndices = nullptr,
+    });
+    data_buffer_commit = memory_allocator.Commit(data_buffer, MemoryUsage::Upload);
+
+    const auto staging_ref = staging_buffer_pool.Request(TOTAL_BUFFER_SIZE, MemoryUsage::Upload);
+    std::memcpy(staging_ref.mapped_span.data(), &ASTC_BUFFER_DATA, sizeof(ASTC_BUFFER_DATA));
+    // Tack on the swizzle table at the end of the buffer
+    std::memcpy(staging_ref.mapped_span.data() + sizeof(ASTC_BUFFER_DATA), &SWIZZLE_TABLE,
+                sizeof(SWIZZLE_TABLE));
+
+    scheduler.Record([src = staging_ref.buffer, offset = staging_ref.offset, dst = *data_buffer,
+                      TOTAL_BUFFER_SIZE](vk::CommandBuffer cmdbuf) {
+        cmdbuf.CopyBuffer(src, dst,
+                          VkBufferCopy{
+                              .srcOffset = offset,
+                              .dstOffset = 0,
+                              .size = TOTAL_BUFFER_SIZE,
+                          });
+        cmdbuf.PipelineBarrier(
+            VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0,
+            VkMemoryBarrier{
+                .sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
+                .pNext = nullptr,
+                .srcAccessMask = 0,
+                .dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT,
+            });
+    });
+}
+
+void ASTCDecoderPass::Assemble(Image& image, const StagingBufferRef& map,
+                               std::span<const VideoCommon::SwizzleParameters> swizzles) {
+    using namespace VideoCommon::Accelerated;
+    const std::array<u32, 2> block_dims{
+        VideoCore::Surface::DefaultBlockWidth(image.info.format),
+        VideoCore::Surface::DefaultBlockHeight(image.info.format),
+    };
+    scheduler.RequestOutsideRenderPassOperationContext();
+    if (!data_buffer) {
+        MakeDataBuffer();
+    }
+    const VkPipeline vk_pipeline = *pipeline;
+    const VkImageAspectFlags aspect_mask = image.AspectMask();
+    const VkImage vk_image = image.Handle();
+    const bool is_initialized = image.ExchangeInitialization();
+    scheduler.Record(
+        [vk_pipeline, vk_image, aspect_mask, is_initialized](vk::CommandBuffer cmdbuf) {
+            const VkImageMemoryBarrier image_barrier{
+                .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
+                .pNext = nullptr,
+                .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
+                .dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
+                .oldLayout = is_initialized ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_UNDEFINED,
+                .newLayout = VK_IMAGE_LAYOUT_GENERAL,
+                .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+                .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+                .image = vk_image,
+                .subresourceRange{
+                    .aspectMask = aspect_mask,
+                    .baseMipLevel = 0,
+                    .levelCount = VK_REMAINING_MIP_LEVELS,
+                    .baseArrayLayer = 0,
+                    .layerCount = VK_REMAINING_ARRAY_LAYERS,
+                },
+            };
+            cmdbuf.PipelineBarrier(is_initialized ? VK_PIPELINE_STAGE_ALL_COMMANDS_BIT : 0,
+                                   VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, image_barrier);
+            cmdbuf.BindPipeline(VK_PIPELINE_BIND_POINT_COMPUTE, vk_pipeline);
+        });
+    for (const VideoCommon::SwizzleParameters& swizzle : swizzles) {
+        const size_t input_offset = swizzle.buffer_offset + map.offset;
+        const u32 num_dispatches_x = Common::DivCeil(swizzle.num_tiles.width, 32U);
+        const u32 num_dispatches_y = Common::DivCeil(swizzle.num_tiles.height, 32U);
+        const u32 num_dispatches_z = image.info.resources.layers;
+
+        update_descriptor_queue.Acquire();
+        update_descriptor_queue.AddBuffer(map.buffer, input_offset,
+                                          image.guest_size_bytes - swizzle.buffer_offset);
+        update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, encoding_values),
+                                          sizeof(AstcBufferData::encoding_values));
+        update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, replicate_6_to_8),
+                                          sizeof(AstcBufferData::replicate_6_to_8));
+        update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, replicate_7_to_8),
+                                          sizeof(AstcBufferData::replicate_7_to_8));
+        update_descriptor_queue.AddBuffer(*data_buffer, offsetof(AstcBufferData, replicate_8_to_8),
+                                          sizeof(AstcBufferData::replicate_8_to_8));
+        update_descriptor_queue.AddBuffer(*data_buffer,
+                                          offsetof(AstcBufferData, replicate_byte_to_16),
+                                          sizeof(AstcBufferData::replicate_byte_to_16));
+        update_descriptor_queue.AddBuffer(*data_buffer, sizeof(AstcBufferData),
+                                          sizeof(SWIZZLE_TABLE));
+        update_descriptor_queue.AddImage(image.StorageImageView(swizzle.level));
+
+        const VkDescriptorSet set = CommitDescriptorSet(update_descriptor_queue);
+        const VkPipelineLayout vk_layout = *layout;
+
+        // To unswizzle the ASTC data
+        const auto params = MakeBlockLinearSwizzle2DParams(swizzle, image.info);
+        ASSERT(params.origin == (std::array<u32, 3>{0, 0, 0}));
+        ASSERT(params.destination == (std::array<s32, 3>{0, 0, 0}));
+        scheduler.Record([vk_layout, num_dispatches_x, num_dispatches_y, num_dispatches_z,
+                          block_dims, params, set](vk::CommandBuffer cmdbuf) {
+            const AstcPushConstants uniforms{
+                .blocks_dims = block_dims,
+                .bytes_per_block_log2 = params.bytes_per_block_log2,
+                .layer_stride = params.layer_stride,
+                .block_size = params.block_size,
+                .x_shift = params.x_shift,
+                .block_height = params.block_height,
+                .block_height_mask = params.block_height_mask,
+            };
+            cmdbuf.BindDescriptorSets(VK_PIPELINE_BIND_POINT_COMPUTE, vk_layout, 0, set, {});
+            cmdbuf.PushConstants(vk_layout, VK_SHADER_STAGE_COMPUTE_BIT, uniforms);
+            cmdbuf.Dispatch(num_dispatches_x, num_dispatches_y, num_dispatches_z);
+        });
+    }
+    scheduler.Record([vk_image, aspect_mask](vk::CommandBuffer cmdbuf) {
+        const VkImageMemoryBarrier image_barrier{
+            .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
+            .pNext = nullptr,
+            .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
+            .dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
+            .oldLayout = VK_IMAGE_LAYOUT_GENERAL,
+            .newLayout = VK_IMAGE_LAYOUT_GENERAL,
+            .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+            .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
+            .image = vk_image,
+            .subresourceRange{
+                .aspectMask = aspect_mask,
+                .baseMipLevel = 0,
+                .levelCount = VK_REMAINING_MIP_LEVELS,
+                .baseArrayLayer = 0,
+                .layerCount = VK_REMAINING_ARRAY_LAYERS,
+            },
+        };
+        cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
+                               VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, image_barrier);
+    });
+}
+
 } // namespace Vulkan
diff --git a/src/video_core/renderer_vulkan/vk_compute_pass.h b/src/video_core/renderer_vulkan/vk_compute_pass.h
index 17d781d99..5ea187c30 100644
--- a/src/video_core/renderer_vulkan/vk_compute_pass.h
+++ b/src/video_core/renderer_vulkan/vk_compute_pass.h
@@ -11,14 +11,21 @@
 #include "common/common_types.h"
 #include "video_core/engines/maxwell_3d.h"
 #include "video_core/renderer_vulkan/vk_descriptor_pool.h"
+#include "video_core/vulkan_common/vulkan_memory_allocator.h"
 #include "video_core/vulkan_common/vulkan_wrapper.h"
 
+namespace VideoCommon {
+struct SwizzleParameters;
+}
+
 namespace Vulkan {
 
 class Device;
 class StagingBufferPool;
 class VKScheduler;
 class VKUpdateDescriptorQueue;
+class Image;
+struct StagingBufferRef;
 
 class VKComputePass {
 public:
@@ -77,4 +84,29 @@ private:
     VKUpdateDescriptorQueue& update_descriptor_queue;
 };
 
+class ASTCDecoderPass final : public VKComputePass {
+public:
+    explicit ASTCDecoderPass(const Device& device_, VKScheduler& scheduler_,
+                             VKDescriptorPool& descriptor_pool_,
+                             StagingBufferPool& staging_buffer_pool_,
+                             VKUpdateDescriptorQueue& update_descriptor_queue_,
+                             MemoryAllocator& memory_allocator_);
+    ~ASTCDecoderPass();
+
+    void Assemble(Image& image, const StagingBufferRef& map,
+                  std::span<const VideoCommon::SwizzleParameters> swizzles);
+
+private:
+    void MakeDataBuffer();
+
+    const Device& device;
+    VKScheduler& scheduler;
+    StagingBufferPool& staging_buffer_pool;
+    VKUpdateDescriptorQueue& update_descriptor_queue;
+    MemoryAllocator& memory_allocator;
+
+    vk::Buffer data_buffer;
+    MemoryCommit data_buffer_commit;
+};
+
 } // namespace Vulkan
diff --git a/src/video_core/renderer_vulkan/vk_rasterizer.cpp b/src/video_core/renderer_vulkan/vk_rasterizer.cpp
index dfd38f575..df5b7b172 100644
--- a/src/video_core/renderer_vulkan/vk_rasterizer.cpp
+++ b/src/video_core/renderer_vulkan/vk_rasterizer.cpp
@@ -241,7 +241,10 @@ RasterizerVulkan::RasterizerVulkan(Core::Frontend::EmuWindow& emu_window_, Tegra
       staging_pool(device, memory_allocator, scheduler), descriptor_pool(device, scheduler),
       update_descriptor_queue(device, scheduler),
       blit_image(device, scheduler, state_tracker, descriptor_pool),
-      texture_cache_runtime{device, scheduler, memory_allocator, staging_pool, blit_image},
+      astc_decoder_pass(device, scheduler, descriptor_pool, staging_pool, update_descriptor_queue,
+                        memory_allocator),
+      texture_cache_runtime{device,       scheduler,  memory_allocator,
+                            staging_pool, blit_image, astc_decoder_pass},
       texture_cache(texture_cache_runtime, *this, maxwell3d, kepler_compute, gpu_memory),
       buffer_cache_runtime(device, memory_allocator, scheduler, staging_pool,
                            update_descriptor_queue, descriptor_pool),
diff --git a/src/video_core/renderer_vulkan/vk_rasterizer.h b/src/video_core/renderer_vulkan/vk_rasterizer.h
index acea1ba2d..235afc6f3 100644
--- a/src/video_core/renderer_vulkan/vk_rasterizer.h
+++ b/src/video_core/renderer_vulkan/vk_rasterizer.h
@@ -173,6 +173,7 @@ private:
     VKDescriptorPool descriptor_pool;
     VKUpdateDescriptorQueue update_descriptor_queue;
     BlitImageHelper blit_image;
+    ASTCDecoderPass astc_decoder_pass;
 
     GraphicsPipelineCacheKey graphics_key;
 
diff --git a/src/video_core/renderer_vulkan/vk_texture_cache.cpp b/src/video_core/renderer_vulkan/vk_texture_cache.cpp
index 22a1014a9..18155e449 100644
--- a/src/video_core/renderer_vulkan/vk_texture_cache.cpp
+++ b/src/video_core/renderer_vulkan/vk_texture_cache.cpp
@@ -10,6 +10,7 @@
 #include "video_core/engines/fermi_2d.h"
 #include "video_core/renderer_vulkan/blit_image.h"
 #include "video_core/renderer_vulkan/maxwell_to_vk.h"
+#include "video_core/renderer_vulkan/vk_compute_pass.h"
 #include "video_core/renderer_vulkan/vk_rasterizer.h"
 #include "video_core/renderer_vulkan/vk_scheduler.h"
 #include "video_core/renderer_vulkan/vk_staging_buffer_pool.h"
@@ -807,7 +808,7 @@ Image::Image(TextureCacheRuntime& runtime, const ImageInfo& info_, GPUVAddr gpu_
         commit = runtime.memory_allocator.Commit(buffer, MemoryUsage::DeviceLocal);
     }
     if (IsPixelFormatASTC(info.format) && !runtime.device.IsOptimalAstcSupported()) {
-        flags |= VideoCommon::ImageFlagBits::Converted;
+        flags |= VideoCommon::ImageFlagBits::AcceleratedUpload;
     }
     if (runtime.device.HasDebuggingToolAttached()) {
         if (image) {
@@ -816,6 +817,38 @@ Image::Image(TextureCacheRuntime& runtime, const ImageInfo& info_, GPUVAddr gpu_
             buffer.SetObjectNameEXT(VideoCommon::Name(*this).c_str());
         }
     }
+    static constexpr VkImageViewUsageCreateInfo storage_image_view_usage_create_info{
+        .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO,
+        .pNext = nullptr,
+        .usage = VK_IMAGE_USAGE_STORAGE_BIT,
+    };
+    if (IsPixelFormatASTC(info.format) && !runtime.device.IsOptimalAstcSupported()) {
+        const auto& device = runtime.device.GetLogical();
+        storage_image_views.reserve(info.resources.levels);
+        for (s32 level = 0; level < info.resources.levels; ++level) {
+            storage_image_views.push_back(device.CreateImageView(VkImageViewCreateInfo{
+                .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
+                .pNext = &storage_image_view_usage_create_info,
+                .flags = 0,
+                .image = *image,
+                .viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY,
+                .format = VK_FORMAT_A8B8G8R8_UNORM_PACK32,
+                .components{
+                    .r = VK_COMPONENT_SWIZZLE_IDENTITY,
+                    .g = VK_COMPONENT_SWIZZLE_IDENTITY,
+                    .b = VK_COMPONENT_SWIZZLE_IDENTITY,
+                    .a = VK_COMPONENT_SWIZZLE_IDENTITY,
+                },
+                .subresourceRange{
+                    .aspectMask = aspect_mask,
+                    .baseMipLevel = static_cast<u32>(level),
+                    .levelCount = 1,
+                    .baseArrayLayer = 0,
+                    .layerCount = VK_REMAINING_ARRAY_LAYERS,
+                },
+            }));
+        }
+    }
 }
 
 void Image::UploadMemory(const StagingBufferRef& map, std::span<const BufferImageCopy> copies) {
@@ -918,7 +951,6 @@ ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::ImageViewI
         }
     }
     const auto format_info = MaxwellToVK::SurfaceFormat(*device, FormatType::Optimal, true, format);
-    const VkFormat vk_format = format_info.format;
     const VkImageViewUsageCreateInfo image_view_usage{
         .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_USAGE_CREATE_INFO,
         .pNext = nullptr,
@@ -930,7 +962,7 @@ ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::ImageViewI
         .flags = 0,
         .image = image.Handle(),
         .viewType = VkImageViewType{},
-        .format = vk_format,
+        .format = format_info.format,
         .components{
             .r = ComponentSwizzle(swizzle[0]),
             .g = ComponentSwizzle(swizzle[1]),
@@ -982,7 +1014,7 @@ ImageView::ImageView(TextureCacheRuntime& runtime, const VideoCommon::ImageViewI
             .pNext = nullptr,
             .flags = 0,
             .buffer = image.Buffer(),
-            .format = vk_format,
+            .format = format_info.format,
             .offset = 0, // TODO: Redesign buffer cache to support this
             .range = image.guest_size_bytes,
         });
@@ -1167,4 +1199,13 @@ Framebuffer::Framebuffer(TextureCacheRuntime& runtime, std::span<ImageView*, NUM
     }
 }
 
+void TextureCacheRuntime::AccelerateImageUpload(
+    Image& image, const StagingBufferRef& map,
+    std::span<const VideoCommon::SwizzleParameters> swizzles) {
+    if (IsPixelFormatASTC(image.info.format)) {
+        return astc_decoder_pass.Assemble(image, map, swizzles);
+    }
+    UNREACHABLE();
+}
+
 } // namespace Vulkan
diff --git a/src/video_core/renderer_vulkan/vk_texture_cache.h b/src/video_core/renderer_vulkan/vk_texture_cache.h
index 3aee27ce0..628785d5e 100644
--- a/src/video_core/renderer_vulkan/vk_texture_cache.h
+++ b/src/video_core/renderer_vulkan/vk_texture_cache.h
@@ -20,6 +20,7 @@ using VideoCommon::Offset2D;
 using VideoCommon::RenderTargets;
 using VideoCore::Surface::PixelFormat;
 
+class ASTCDecoderPass;
 class BlitImageHelper;
 class Device;
 class Image;
@@ -60,6 +61,7 @@ struct TextureCacheRuntime {
     MemoryAllocator& memory_allocator;
     StagingBufferPool& staging_buffer_pool;
     BlitImageHelper& blit_image_helper;
+    ASTCDecoderPass& astc_decoder_pass;
     std::unordered_map<RenderPassKey, vk::RenderPass> renderpass_cache{};
 
     void Finish();
@@ -83,9 +85,7 @@ struct TextureCacheRuntime {
     }
 
     void AccelerateImageUpload(Image&, const StagingBufferRef&,
-                               std::span<const VideoCommon::SwizzleParameters>) {
-        UNREACHABLE();
-    }
+                               std::span<const VideoCommon::SwizzleParameters>);
 
     void InsertUploadMemoryBarrier() {}
 
@@ -121,15 +121,26 @@ public:
         return *buffer;
     }
 
-    [[nodiscard]] VkImageCreateFlags AspectMask() const noexcept {
+    [[nodiscard]] VkImageAspectFlags AspectMask() const noexcept {
         return aspect_mask;
     }
 
+    [[nodiscard]] VkImageView StorageImageView(s32 level) const noexcept {
+        return *storage_image_views[level];
+    }
+
+    /// Returns true when the image is already initialized and mark it as initialized
+    [[nodiscard]] bool ExchangeInitialization() noexcept {
+        return std::exchange(initialized, true);
+    }
+
 private:
     VKScheduler* scheduler;
     vk::Image image;
     vk::Buffer buffer;
     MemoryCommit commit;
+    vk::ImageView image_view;
+    std::vector<vk::ImageView> storage_image_views;
     VkImageAspectFlags aspect_mask = 0;
     bool initialized = false;
 };
diff --git a/src/video_core/texture_cache/accelerated_swizzle.h b/src/video_core/texture_cache/accelerated_swizzle.h
index 6ec5c78c4..a11c924e1 100644
--- a/src/video_core/texture_cache/accelerated_swizzle.h
+++ b/src/video_core/texture_cache/accelerated_swizzle.h
@@ -13,8 +13,8 @@
 namespace VideoCommon::Accelerated {
 
 struct BlockLinearSwizzle2DParams {
-    std::array<u32, 3> origin;
-    std::array<s32, 3> destination;
+    alignas(16) std::array<u32, 3> origin;
+    alignas(16) std::array<s32, 3> destination;
     u32 bytes_per_block_log2;
     u32 layer_stride;
     u32 block_size;
diff --git a/src/video_core/texture_cache/util.cpp b/src/video_core/texture_cache/util.cpp
index 2c42d1449..c22dd0148 100644
--- a/src/video_core/texture_cache/util.cpp
+++ b/src/video_core/texture_cache/util.cpp
@@ -47,7 +47,6 @@
 #include "video_core/texture_cache/formatter.h"
 #include "video_core/texture_cache/samples_helper.h"
 #include "video_core/texture_cache/util.h"
-#include "video_core/textures/astc.h"
 #include "video_core/textures/decoders.h"
 
 namespace VideoCommon {
@@ -879,17 +878,8 @@ void ConvertImage(std::span<const u8> input, const ImageInfo& info, std::span<u8
         ASSERT(copy.image_extent == mip_size);
         ASSERT(copy.buffer_row_length == Common::AlignUp(mip_size.width, tile_size.width));
         ASSERT(copy.buffer_image_height == Common::AlignUp(mip_size.height, tile_size.height));
-
-        if (IsPixelFormatASTC(info.format)) {
-            ASSERT(copy.image_extent.depth == 1);
-            Tegra::Texture::ASTC::Decompress(input.subspan(copy.buffer_offset),
-                                             copy.image_extent.width, copy.image_extent.height,
-                                             copy.image_subresource.num_layers, tile_size.width,
-                                             tile_size.height, output.subspan(output_offset));
-        } else {
-            DecompressBC4(input.subspan(copy.buffer_offset), copy.image_extent,
-                          output.subspan(output_offset));
-        }
+        DecompressBC4(input.subspan(copy.buffer_offset), copy.image_extent,
+                      output.subspan(output_offset));
         copy.buffer_offset = output_offset;
         copy.buffer_row_length = mip_size.width;
         copy.buffer_image_height = mip_size.height;
diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp
deleted file mode 100644
index 3625b666c..000000000
--- a/src/video_core/textures/astc.cpp
+++ /dev/null
@@ -1,1710 +0,0 @@
-// Copyright 2016 The University of North Carolina at Chapel Hill
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-//    http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// Please send all BUG REPORTS to <pavel@cs.unc.edu>.
-// <http://gamma.cs.unc.edu/FasTC/>
-
-#include <algorithm>
-#include <cassert>
-#include <cstring>
-#include <span>
-#include <vector>
-
-#include <boost/container/static_vector.hpp>
-
-#include "common/common_types.h"
-
-#include "video_core/textures/astc.h"
-
-namespace {
-
-/// Count the number of bits set in a number.
-constexpr u32 Popcnt(u32 n) {
-    u32 c = 0;
-    for (; n; c++) {
-        n &= n - 1;
-    }
-    return c;
-}
-
-} // Anonymous namespace
-
-class InputBitStream {
-public:
-    constexpr explicit InputBitStream(std::span<const u8> data, size_t start_offset = 0)
-        : cur_byte{data.data()}, total_bits{data.size()}, next_bit{start_offset % 8} {}
-
-    constexpr size_t GetBitsRead() const {
-        return bits_read;
-    }
-
-    constexpr bool ReadBit() {
-        if (bits_read >= total_bits * 8) {
-            return 0;
-        }
-        const bool bit = ((*cur_byte >> next_bit) & 1) != 0;
-        ++next_bit;
-        while (next_bit >= 8) {
-            next_bit -= 8;
-            ++cur_byte;
-        }
-        ++bits_read;
-        return bit;
-    }
-
-    constexpr u32 ReadBits(std::size_t nBits) {
-        u32 ret = 0;
-        for (std::size_t i = 0; i < nBits; ++i) {
-            ret |= (ReadBit() & 1) << i;
-        }
-        return ret;
-    }
-
-    template <std::size_t nBits>
-    constexpr u32 ReadBits() {
-        u32 ret = 0;
-        for (std::size_t i = 0; i < nBits; ++i) {
-            ret |= (ReadBit() & 1) << i;
-        }
-        return ret;
-    }
-
-private:
-    const u8* cur_byte;
-    size_t total_bits = 0;
-    size_t next_bit = 0;
-    size_t bits_read = 0;
-};
-
-class OutputBitStream {
-public:
-    constexpr explicit OutputBitStream(u8* ptr, std::size_t bits = 0, std::size_t start_offset = 0)
-        : cur_byte{ptr}, num_bits{bits}, next_bit{start_offset % 8} {}
-
-    constexpr std::size_t GetBitsWritten() const {
-        return bits_written;
-    }
-
-    constexpr void WriteBitsR(u32 val, u32 nBits) {
-        for (u32 i = 0; i < nBits; i++) {
-            WriteBit((val >> (nBits - i - 1)) & 1);
-        }
-    }
-
-    constexpr void WriteBits(u32 val, u32 nBits) {
-        for (u32 i = 0; i < nBits; i++) {
-            WriteBit((val >> i) & 1);
-        }
-    }
-
-private:
-    constexpr void WriteBit(bool b) {
-        if (bits_written >= num_bits) {
-            return;
-        }
-
-        const u32 mask = 1 << next_bit++;
-
-        // clear the bit
-        *cur_byte &= static_cast<u8>(~mask);
-
-        // Write the bit, if necessary
-        if (b)
-            *cur_byte |= static_cast<u8>(mask);
-
-        // Next byte?
-        if (next_bit >= 8) {
-            cur_byte += 1;
-            next_bit = 0;
-        }
-    }
-
-    u8* cur_byte;
-    std::size_t num_bits;
-    std::size_t bits_written = 0;
-    std::size_t next_bit = 0;
-};
-
-template <typename IntType>
-class Bits {
-public:
-    explicit Bits(const IntType& v) : m_Bits(v) {}
-
-    Bits(const Bits&) = delete;
-    Bits& operator=(const Bits&) = delete;
-
-    u8 operator[](u32 bitPos) const {
-        return static_cast<u8>((m_Bits >> bitPos) & 1);
-    }
-
-    IntType operator()(u32 start, u32 end) const {
-        if (start == end) {
-            return (*this)[start];
-        } else if (start > end) {
-            u32 t = start;
-            start = end;
-            end = t;
-        }
-
-        u64 mask = (1 << (end - start + 1)) - 1;
-        return (m_Bits >> start) & static_cast<IntType>(mask);
-    }
-
-private:
-    const IntType& m_Bits;
-};
-
-enum class IntegerEncoding { JustBits, Qus32, Trit };
-
-struct IntegerEncodedValue {
-    constexpr IntegerEncodedValue() = default;
-
-    constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_)
-        : encoding{encoding_}, num_bits{num_bits_} {}
-
-    constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const {
-        return encoding == other.encoding && num_bits == other.num_bits;
-    }
-
-    // Returns the number of bits required to encode nVals values.
-    u32 GetBitLength(u32 nVals) const {
-        u32 totalBits = num_bits * nVals;
-        if (encoding == IntegerEncoding::Trit) {
-            totalBits += (nVals * 8 + 4) / 5;
-        } else if (encoding == IntegerEncoding::Qus32) {
-            totalBits += (nVals * 7 + 2) / 3;
-        }
-        return totalBits;
-    }
-
-    IntegerEncoding encoding{};
-    u32 num_bits = 0;
-    u32 bit_value = 0;
-    union {
-        u32 qus32_value = 0;
-        u32 trit_value;
-    };
-};
-using IntegerEncodedVector = boost::container::static_vector<
-    IntegerEncodedValue, 256,
-    boost::container::static_vector_options<
-        boost::container::inplace_alignment<alignof(IntegerEncodedValue)>,
-        boost::container::throw_on_overflow<false>>::type>;
-
-static void DecodeTritBlock(InputBitStream& bits, IntegerEncodedVector& result, u32 nBitsPerValue) {
-    // Implement the algorithm in section C.2.12
-    std::array<u32, 5> m;
-    std::array<u32, 5> t;
-    u32 T;
-
-    // Read the trit encoded block according to
-    // table C.2.14
-    m[0] = bits.ReadBits(nBitsPerValue);
-    T = bits.ReadBits<2>();
-    m[1] = bits.ReadBits(nBitsPerValue);
-    T |= bits.ReadBits<2>() << 2;
-    m[2] = bits.ReadBits(nBitsPerValue);
-    T |= bits.ReadBit() << 4;
-    m[3] = bits.ReadBits(nBitsPerValue);
-    T |= bits.ReadBits<2>() << 5;
-    m[4] = bits.ReadBits(nBitsPerValue);
-    T |= bits.ReadBit() << 7;
-
-    u32 C = 0;
-
-    Bits<u32> Tb(T);
-    if (Tb(2, 4) == 7) {
-        C = (Tb(5, 7) << 2) | Tb(0, 1);
-        t[4] = t[3] = 2;
-    } else {
-        C = Tb(0, 4);
-        if (Tb(5, 6) == 3) {
-            t[4] = 2;
-            t[3] = Tb[7];
-        } else {
-            t[4] = Tb[7];
-            t[3] = Tb(5, 6);
-        }
-    }
-
-    Bits<u32> Cb(C);
-    if (Cb(0, 1) == 3) {
-        t[2] = 2;
-        t[1] = Cb[4];
-        t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
-    } else if (Cb(2, 3) == 3) {
-        t[2] = 2;
-        t[1] = 2;
-        t[0] = Cb(0, 1);
-    } else {
-        t[2] = Cb[4];
-        t[1] = Cb(2, 3);
-        t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
-    }
-
-    for (std::size_t i = 0; i < 5; ++i) {
-        IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Trit, nBitsPerValue);
-        val.bit_value = m[i];
-        val.trit_value = t[i];
-    }
-}
-
-static void DecodeQus32Block(InputBitStream& bits, IntegerEncodedVector& result,
-                             u32 nBitsPerValue) {
-    // Implement the algorithm in section C.2.12
-    u32 m[3];
-    u32 q[3];
-    u32 Q;
-
-    // Read the trit encoded block according to
-    // table C.2.15
-    m[0] = bits.ReadBits(nBitsPerValue);
-    Q = bits.ReadBits<3>();
-    m[1] = bits.ReadBits(nBitsPerValue);
-    Q |= bits.ReadBits<2>() << 3;
-    m[2] = bits.ReadBits(nBitsPerValue);
-    Q |= bits.ReadBits<2>() << 5;
-
-    Bits<u32> Qb(Q);
-    if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
-        q[0] = q[1] = 4;
-        q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
-    } else {
-        u32 C = 0;
-        if (Qb(1, 2) == 3) {
-            q[2] = 4;
-            C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
-        } else {
-            q[2] = Qb(5, 6);
-            C = Qb(0, 4);
-        }
-
-        Bits<u32> Cb(C);
-        if (Cb(0, 2) == 5) {
-            q[1] = 4;
-            q[0] = Cb(3, 4);
-        } else {
-            q[1] = Cb(3, 4);
-            q[0] = Cb(0, 2);
-        }
-    }
-
-    for (std::size_t i = 0; i < 3; ++i) {
-        IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Qus32, nBitsPerValue);
-        val.bit_value = m[i];
-        val.qus32_value = q[i];
-    }
-}
-
-// Returns a new instance of this struct that corresponds to the
-// can take no more than maxval values
-static constexpr IntegerEncodedValue CreateEncoding(u32 maxVal) {
-    while (maxVal > 0) {
-        u32 check = maxVal + 1;
-
-        // Is maxVal a power of two?
-        if (!(check & (check - 1))) {
-            return IntegerEncodedValue(IntegerEncoding::JustBits, Popcnt(maxVal));
-        }
-
-        // Is maxVal of the type 3*2^n - 1?
-        if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
-            return IntegerEncodedValue(IntegerEncoding::Trit, Popcnt(check / 3 - 1));
-        }
-
-        // Is maxVal of the type 5*2^n - 1?
-        if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
-            return IntegerEncodedValue(IntegerEncoding::Qus32, Popcnt(check / 5 - 1));
-        }
-
-        // Apparently it can't be represented with a bounded integer sequence...
-        // just iterate.
-        maxVal--;
-    }
-    return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
-}
-
-static constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
-    std::array<IntegerEncodedValue, 256> encodings{};
-    for (std::size_t i = 0; i < encodings.size(); ++i) {
-        encodings[i] = CreateEncoding(static_cast<u32>(i));
-    }
-    return encodings;
-}
-
-static constexpr std::array EncodingsValues = MakeEncodedValues();
-
-// Fills result with the values that are encoded in the given
-// bitstream. We must know beforehand what the maximum possible
-// value is, and how many values we're decoding.
-static void DecodeIntegerSequence(IntegerEncodedVector& result, InputBitStream& bits, u32 maxRange,
-                                  u32 nValues) {
-    // Determine encoding parameters
-    IntegerEncodedValue val = EncodingsValues[maxRange];
-
-    // Start decoding
-    u32 nValsDecoded = 0;
-    while (nValsDecoded < nValues) {
-        switch (val.encoding) {
-        case IntegerEncoding::Qus32:
-            DecodeQus32Block(bits, result, val.num_bits);
-            nValsDecoded += 3;
-            break;
-
-        case IntegerEncoding::Trit:
-            DecodeTritBlock(bits, result, val.num_bits);
-            nValsDecoded += 5;
-            break;
-
-        case IntegerEncoding::JustBits:
-            val.bit_value = bits.ReadBits(val.num_bits);
-            result.push_back(val);
-            nValsDecoded++;
-            break;
-        }
-    }
-}
-
-namespace ASTCC {
-
-struct TexelWeightParams {
-    u32 m_Width = 0;
-    u32 m_Height = 0;
-    bool m_bDualPlane = false;
-    u32 m_MaxWeight = 0;
-    bool m_bError = false;
-    bool m_bVoidExtentLDR = false;
-    bool m_bVoidExtentHDR = false;
-
-    u32 GetPackedBitSize() const {
-        // How many indices do we have?
-        u32 nIdxs = m_Height * m_Width;
-        if (m_bDualPlane) {
-            nIdxs *= 2;
-        }
-
-        return EncodingsValues[m_MaxWeight].GetBitLength(nIdxs);
-    }
-
-    u32 GetNumWeightValues() const {
-        u32 ret = m_Width * m_Height;
-        if (m_bDualPlane) {
-            ret *= 2;
-        }
-        return ret;
-    }
-};
-
-static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
-    TexelWeightParams params;
-
-    // Read the entire block mode all at once
-    u16 modeBits = static_cast<u16>(strm.ReadBits<11>());
-
-    // Does this match the void extent block mode?
-    if ((modeBits & 0x01FF) == 0x1FC) {
-        if (modeBits & 0x200) {
-            params.m_bVoidExtentHDR = true;
-        } else {
-            params.m_bVoidExtentLDR = true;
-        }
-
-        // Next two bits must be one.
-        if (!(modeBits & 0x400) || !strm.ReadBit()) {
-            params.m_bError = true;
-        }
-
-        return params;
-    }
-
-    // First check if the last four bits are zero
-    if ((modeBits & 0xF) == 0) {
-        params.m_bError = true;
-        return params;
-    }
-
-    // If the last two bits are zero, then if bits
-    // [6-8] are all ones, this is also reserved.
-    if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) {
-        params.m_bError = true;
-        return params;
-    }
-
-    // Otherwise, there is no error... Figure out the layout
-    // of the block mode. Layout is determined by a number
-    // between 0 and 9 corresponding to table C.2.8 of the
-    // ASTC spec.
-    u32 layout = 0;
-
-    if ((modeBits & 0x1) || (modeBits & 0x2)) {
-        // layout is in [0-4]
-        if (modeBits & 0x8) {
-            // layout is in [2-4]
-            if (modeBits & 0x4) {
-                // layout is in [3-4]
-                if (modeBits & 0x100) {
-                    layout = 4;
-                } else {
-                    layout = 3;
-                }
-            } else {
-                layout = 2;
-            }
-        } else {
-            // layout is in [0-1]
-            if (modeBits & 0x4) {
-                layout = 1;
-            } else {
-                layout = 0;
-            }
-        }
-    } else {
-        // layout is in [5-9]
-        if (modeBits & 0x100) {
-            // layout is in [7-9]
-            if (modeBits & 0x80) {
-                // layout is in [7-8]
-                assert((modeBits & 0x40) == 0U);
-                if (modeBits & 0x20) {
-                    layout = 8;
-                } else {
-                    layout = 7;
-                }
-            } else {
-                layout = 9;
-            }
-        } else {
-            // layout is in [5-6]
-            if (modeBits & 0x80) {
-                layout = 6;
-            } else {
-                layout = 5;
-            }
-        }
-    }
-
-    assert(layout < 10);
-
-    // Determine R
-    u32 R = !!(modeBits & 0x10);
-    if (layout < 5) {
-        R |= (modeBits & 0x3) << 1;
-    } else {
-        R |= (modeBits & 0xC) >> 1;
-    }
-    assert(2 <= R && R <= 7);
-
-    // Determine width & height
-    switch (layout) {
-    case 0: {
-        u32 A = (modeBits >> 5) & 0x3;
-        u32 B = (modeBits >> 7) & 0x3;
-        params.m_Width = B + 4;
-        params.m_Height = A + 2;
-        break;
-    }
-
-    case 1: {
-        u32 A = (modeBits >> 5) & 0x3;
-        u32 B = (modeBits >> 7) & 0x3;
-        params.m_Width = B + 8;
-        params.m_Height = A + 2;
-        break;
-    }
-
-    case 2: {
-        u32 A = (modeBits >> 5) & 0x3;
-        u32 B = (modeBits >> 7) & 0x3;
-        params.m_Width = A + 2;
-        params.m_Height = B + 8;
-        break;
-    }
-
-    case 3: {
-        u32 A = (modeBits >> 5) & 0x3;
-        u32 B = (modeBits >> 7) & 0x1;
-        params.m_Width = A + 2;
-        params.m_Height = B + 6;
-        break;
-    }
-
-    case 4: {
-        u32 A = (modeBits >> 5) & 0x3;
-        u32 B = (modeBits >> 7) & 0x1;
-        params.m_Width = B + 2;
-        params.m_Height = A + 2;
-        break;
-    }
-
-    case 5: {
-        u32 A = (modeBits >> 5) & 0x3;
-        params.m_Width = 12;
-        params.m_Height = A + 2;
-        break;
-    }
-
-    case 6: {
-        u32 A = (modeBits >> 5) & 0x3;
-        params.m_Width = A + 2;
-        params.m_Height = 12;
-        break;
-    }
-
-    case 7: {
-        params.m_Width = 6;
-        params.m_Height = 10;
-        break;
-    }
-
-    case 8: {
-        params.m_Width = 10;
-        params.m_Height = 6;
-        break;
-    }
-
-    case 9: {
-        u32 A = (modeBits >> 5) & 0x3;
-        u32 B = (modeBits >> 9) & 0x3;
-        params.m_Width = A + 6;
-        params.m_Height = B + 6;
-        break;
-    }
-
-    default:
-        assert(false && "Don't know this layout...");
-        params.m_bError = true;
-        break;
-    }
-
-    // Determine whether or not we're using dual planes
-    // and/or high precision layouts.
-    bool D = (layout != 9) && (modeBits & 0x400);
-    bool H = (layout != 9) && (modeBits & 0x200);
-
-    if (H) {
-        const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31};
-        params.m_MaxWeight = maxWeights[R - 2];
-    } else {
-        const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7};
-        params.m_MaxWeight = maxWeights[R - 2];
-    }
-
-    params.m_bDualPlane = D;
-
-    return params;
-}
-
-static void FillVoidExtentLDR(InputBitStream& strm, std::span<u32> outBuf, u32 blockWidth,
-                              u32 blockHeight) {
-    // Don't actually care about the void extent, just read the bits...
-    for (s32 i = 0; i < 4; ++i) {
-        strm.ReadBits<13>();
-    }
-
-    // Decode the RGBA components and renormalize them to the range [0, 255]
-    u16 r = static_cast<u16>(strm.ReadBits<16>());
-    u16 g = static_cast<u16>(strm.ReadBits<16>());
-    u16 b = static_cast<u16>(strm.ReadBits<16>());
-    u16 a = static_cast<u16>(strm.ReadBits<16>());
-
-    u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast<u32>(b) & 0xFF00) << 8 |
-               (static_cast<u32>(a) & 0xFF00) << 16;
-
-    for (u32 j = 0; j < blockHeight; j++) {
-        for (u32 i = 0; i < blockWidth; i++) {
-            outBuf[j * blockWidth + i] = rgba;
-        }
-    }
-}
-
-static void FillError(std::span<u32> outBuf, u32 blockWidth, u32 blockHeight) {
-    for (u32 j = 0; j < blockHeight; j++) {
-        for (u32 i = 0; i < blockWidth; i++) {
-            outBuf[j * blockWidth + i] = 0xFFFF00FF;
-        }
-    }
-}
-
-// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
-// is the same as [(numBits - 1):0] and repeats all the way down.
-template <typename IntType>
-static constexpr IntType Replicate(IntType val, u32 numBits, u32 toBit) {
-    if (numBits == 0) {
-        return 0;
-    }
-    if (toBit == 0) {
-        return 0;
-    }
-    const IntType v = val & static_cast<IntType>((1 << numBits) - 1);
-    IntType res = v;
-    u32 reslen = numBits;
-    while (reslen < toBit) {
-        u32 comp = 0;
-        if (numBits > toBit - reslen) {
-            u32 newshift = toBit - reslen;
-            comp = numBits - newshift;
-            numBits = newshift;
-        }
-        res = static_cast<IntType>(res << numBits);
-        res = static_cast<IntType>(res | (v >> comp));
-        reslen += numBits;
-    }
-    return res;
-}
-
-static constexpr std::size_t NumReplicateEntries(u32 num_bits) {
-    return std::size_t(1) << num_bits;
-}
-
-template <typename IntType, u32 num_bits, u32 to_bit>
-static constexpr auto MakeReplicateTable() {
-    std::array<IntType, NumReplicateEntries(num_bits)> table{};
-    for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) {
-        table[value] = Replicate(value, num_bits, to_bit);
-    }
-    return table;
-}
-
-static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>();
-static constexpr u32 ReplicateByteTo16(std::size_t value) {
-    return REPLICATE_BYTE_TO_16_TABLE[value];
-}
-
-static constexpr auto REPLICATE_BIT_TO_7_TABLE = MakeReplicateTable<u32, 1, 7>();
-static constexpr u32 ReplicateBitTo7(std::size_t value) {
-    return REPLICATE_BIT_TO_7_TABLE[value];
-}
-
-static constexpr auto REPLICATE_BIT_TO_9_TABLE = MakeReplicateTable<u32, 1, 9>();
-static constexpr u32 ReplicateBitTo9(std::size_t value) {
-    return REPLICATE_BIT_TO_9_TABLE[value];
-}
-
-static constexpr auto REPLICATE_1_BIT_TO_8_TABLE = MakeReplicateTable<u32, 1, 8>();
-static constexpr auto REPLICATE_2_BIT_TO_8_TABLE = MakeReplicateTable<u32, 2, 8>();
-static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable<u32, 3, 8>();
-static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable<u32, 4, 8>();
-static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable<u32, 5, 8>();
-static constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
-static constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
-static constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
-/// Use a precompiled table with the most common usages, if it's not in the expected range, fallback
-/// to the runtime implementation
-static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) {
-    switch (num_bits) {
-    case 1:
-        return REPLICATE_1_BIT_TO_8_TABLE[value];
-    case 2:
-        return REPLICATE_2_BIT_TO_8_TABLE[value];
-    case 3:
-        return REPLICATE_3_BIT_TO_8_TABLE[value];
-    case 4:
-        return REPLICATE_4_BIT_TO_8_TABLE[value];
-    case 5:
-        return REPLICATE_5_BIT_TO_8_TABLE[value];
-    case 6:
-        return REPLICATE_6_BIT_TO_8_TABLE[value];
-    case 7:
-        return REPLICATE_7_BIT_TO_8_TABLE[value];
-    case 8:
-        return REPLICATE_8_BIT_TO_8_TABLE[value];
-    default:
-        return Replicate(value, num_bits, 8);
-    }
-}
-
-static constexpr auto REPLICATE_1_BIT_TO_6_TABLE = MakeReplicateTable<u32, 1, 6>();
-static constexpr auto REPLICATE_2_BIT_TO_6_TABLE = MakeReplicateTable<u32, 2, 6>();
-static constexpr auto REPLICATE_3_BIT_TO_6_TABLE = MakeReplicateTable<u32, 3, 6>();
-static constexpr auto REPLICATE_4_BIT_TO_6_TABLE = MakeReplicateTable<u32, 4, 6>();
-static constexpr auto REPLICATE_5_BIT_TO_6_TABLE = MakeReplicateTable<u32, 5, 6>();
-static constexpr u32 FastReplicateTo6(u32 value, u32 num_bits) {
-    switch (num_bits) {
-    case 1:
-        return REPLICATE_1_BIT_TO_6_TABLE[value];
-    case 2:
-        return REPLICATE_2_BIT_TO_6_TABLE[value];
-    case 3:
-        return REPLICATE_3_BIT_TO_6_TABLE[value];
-    case 4:
-        return REPLICATE_4_BIT_TO_6_TABLE[value];
-    case 5:
-        return REPLICATE_5_BIT_TO_6_TABLE[value];
-    default:
-        return Replicate(value, num_bits, 6);
-    }
-}
-
-class Pixel {
-protected:
-    using ChannelType = s16;
-    u8 m_BitDepth[4] = {8, 8, 8, 8};
-    s16 color[4] = {};
-
-public:
-    Pixel() = default;
-    Pixel(u32 a, u32 r, u32 g, u32 b, u32 bitDepth = 8)
-        : m_BitDepth{u8(bitDepth), u8(bitDepth), u8(bitDepth), u8(bitDepth)},
-          color{static_cast<ChannelType>(a), static_cast<ChannelType>(r),
-                static_cast<ChannelType>(g), static_cast<ChannelType>(b)} {}
-
-    // Changes the depth of each pixel. This scales the values to
-    // the appropriate bit depth by either truncating the least
-    // significant bits when going from larger to smaller bit depth
-    // or by repeating the most significant bits when going from
-    // smaller to larger bit depths.
-    void ChangeBitDepth() {
-        for (u32 i = 0; i < 4; i++) {
-            Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i]);
-            m_BitDepth[i] = 8;
-        }
-    }
-
-    template <typename IntType>
-    static float ConvertChannelToFloat(IntType channel, u8 bitDepth) {
-        float denominator = static_cast<float>((1 << bitDepth) - 1);
-        return static_cast<float>(channel) / denominator;
-    }
-
-    // Changes the bit depth of a single component. See the comment
-    // above for how we do this.
-    static ChannelType ChangeBitDepth(Pixel::ChannelType val, u8 oldDepth) {
-        assert(oldDepth <= 8);
-
-        if (oldDepth == 8) {
-            // Do nothing
-            return val;
-        } else if (oldDepth == 0) {
-            return static_cast<ChannelType>((1 << 8) - 1);
-        } else if (8 > oldDepth) {
-            return static_cast<ChannelType>(FastReplicateTo8(static_cast<u32>(val), oldDepth));
-        } else {
-            // oldDepth > newDepth
-            const u8 bitsWasted = static_cast<u8>(oldDepth - 8);
-            u16 v = static_cast<u16>(val);
-            v = static_cast<u16>((v + (1 << (bitsWasted - 1))) >> bitsWasted);
-            v = ::std::min<u16>(::std::max<u16>(0, v), static_cast<u16>((1 << 8) - 1));
-            return static_cast<u8>(v);
-        }
-
-        assert(false && "We shouldn't get here.");
-        return 0;
-    }
-
-    const ChannelType& A() const {
-        return color[0];
-    }
-    ChannelType& A() {
-        return color[0];
-    }
-    const ChannelType& R() const {
-        return color[1];
-    }
-    ChannelType& R() {
-        return color[1];
-    }
-    const ChannelType& G() const {
-        return color[2];
-    }
-    ChannelType& G() {
-        return color[2];
-    }
-    const ChannelType& B() const {
-        return color[3];
-    }
-    ChannelType& B() {
-        return color[3];
-    }
-    const ChannelType& Component(u32 idx) const {
-        return color[idx];
-    }
-    ChannelType& Component(u32 idx) {
-        return color[idx];
-    }
-
-    void GetBitDepth(u8 (&outDepth)[4]) const {
-        for (s32 i = 0; i < 4; i++) {
-            outDepth[i] = m_BitDepth[i];
-        }
-    }
-
-    // Take all of the components, transform them to their 8-bit variants,
-    // and then pack each channel into an R8G8B8A8 32-bit integer. We assume
-    // that the architecture is little-endian, so the alpha channel will end
-    // up in the most-significant byte.
-    u32 Pack() const {
-        Pixel eightBit(*this);
-        eightBit.ChangeBitDepth();
-
-        u32 r = 0;
-        r |= eightBit.A();
-        r <<= 8;
-        r |= eightBit.B();
-        r <<= 8;
-        r |= eightBit.G();
-        r <<= 8;
-        r |= eightBit.R();
-        return r;
-    }
-
-    // Clamps the pixel to the range [0,255]
-    void ClampByte() {
-        for (u32 i = 0; i < 4; i++) {
-            color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
-        }
-    }
-
-    void MakeOpaque() {
-        A() = 255;
-    }
-};
-
-static void DecodeColorValues(u32* out, std::span<u8> data, const u32* modes, const u32 nPartitions,
-                              const u32 nBitsForColorData) {
-    // First figure out how many color values we have
-    u32 nValues = 0;
-    for (u32 i = 0; i < nPartitions; i++) {
-        nValues += ((modes[i] >> 2) + 1) << 1;
-    }
-
-    // Then based on the number of values and the remaining number of bits,
-    // figure out the max value for each of them...
-    u32 range = 256;
-    while (--range > 0) {
-        IntegerEncodedValue val = EncodingsValues[range];
-        u32 bitLength = val.GetBitLength(nValues);
-        if (bitLength <= nBitsForColorData) {
-            // Find the smallest possible range that matches the given encoding
-            while (--range > 0) {
-                IntegerEncodedValue newval = EncodingsValues[range];
-                if (!newval.MatchesEncoding(val)) {
-                    break;
-                }
-            }
-
-            // Return to last matching range.
-            range++;
-            break;
-        }
-    }
-
-    // We now have enough to decode our integer sequence.
-    IntegerEncodedVector decodedColorValues;
-
-    InputBitStream colorStream(data, 0);
-    DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
-
-    // Once we have the decoded values, we need to dequantize them to the 0-255 range
-    // This procedure is outlined in ASTC spec C.2.13
-    u32 outIdx = 0;
-    for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) {
-        // Have we already decoded all that we need?
-        if (outIdx >= nValues) {
-            break;
-        }
-
-        const IntegerEncodedValue& val = *itr;
-        u32 bitlen = val.num_bits;
-        u32 bitval = val.bit_value;
-
-        assert(bitlen >= 1);
-
-        u32 A = 0, B = 0, C = 0, D = 0;
-        // A is just the lsb replicated 9 times.
-        A = ReplicateBitTo9(bitval & 1);
-
-        switch (val.encoding) {
-        // Replicate bits
-        case IntegerEncoding::JustBits:
-            out[outIdx++] = FastReplicateTo8(bitval, bitlen);
-            break;
-
-        // Use algorithm in C.2.13
-        case IntegerEncoding::Trit: {
-
-            D = val.trit_value;
-
-            switch (bitlen) {
-            case 1: {
-                C = 204;
-            } break;
-
-            case 2: {
-                C = 93;
-                // B = b000b0bb0
-                u32 b = (bitval >> 1) & 1;
-                B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
-            } break;
-
-            case 3: {
-                C = 44;
-                // B = cb000cbcb
-                u32 cb = (bitval >> 1) & 3;
-                B = (cb << 7) | (cb << 2) | cb;
-            } break;
-
-            case 4: {
-                C = 22;
-                // B = dcb000dcb
-                u32 dcb = (bitval >> 1) & 7;
-                B = (dcb << 6) | dcb;
-            } break;
-
-            case 5: {
-                C = 11;
-                // B = edcb000ed
-                u32 edcb = (bitval >> 1) & 0xF;
-                B = (edcb << 5) | (edcb >> 2);
-            } break;
-
-            case 6: {
-                C = 5;
-                // B = fedcb000f
-                u32 fedcb = (bitval >> 1) & 0x1F;
-                B = (fedcb << 4) | (fedcb >> 4);
-            } break;
-
-            default:
-                assert(false && "Unsupported trit encoding for color values!");
-                break;
-            } // switch(bitlen)
-        }     // case IntegerEncoding::Trit
-        break;
-
-        case IntegerEncoding::Qus32: {
-
-            D = val.qus32_value;
-
-            switch (bitlen) {
-            case 1: {
-                C = 113;
-            } break;
-
-            case 2: {
-                C = 54;
-                // B = b0000bb00
-                u32 b = (bitval >> 1) & 1;
-                B = (b << 8) | (b << 3) | (b << 2);
-            } break;
-
-            case 3: {
-                C = 26;
-                // B = cb0000cbc
-                u32 cb = (bitval >> 1) & 3;
-                B = (cb << 7) | (cb << 1) | (cb >> 1);
-            } break;
-
-            case 4: {
-                C = 13;
-                // B = dcb0000dc
-                u32 dcb = (bitval >> 1) & 7;
-                B = (dcb << 6) | (dcb >> 1);
-            } break;
-
-            case 5: {
-                C = 6;
-                // B = edcb0000e
-                u32 edcb = (bitval >> 1) & 0xF;
-                B = (edcb << 5) | (edcb >> 3);
-            } break;
-
-            default:
-                assert(false && "Unsupported quint encoding for color values!");
-                break;
-            } // switch(bitlen)
-        }     // case IntegerEncoding::Qus32
-        break;
-        } // switch(val.encoding)
-
-        if (val.encoding != IntegerEncoding::JustBits) {
-            u32 T = D * C + B;
-            T ^= A;
-            T = (A & 0x80) | (T >> 2);
-            out[outIdx++] = T;
-        }
-    }
-
-    // Make sure that each of our values is in the proper range...
-    for (u32 i = 0; i < nValues; i++) {
-        assert(out[i] <= 255);
-    }
-}
-
-static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) {
-    u32 bitval = val.bit_value;
-    u32 bitlen = val.num_bits;
-
-    u32 A = ReplicateBitTo7(bitval & 1);
-    u32 B = 0, C = 0, D = 0;
-
-    u32 result = 0;
-    switch (val.encoding) {
-    case IntegerEncoding::JustBits:
-        result = FastReplicateTo6(bitval, bitlen);
-        break;
-
-    case IntegerEncoding::Trit: {
-        D = val.trit_value;
-        assert(D < 3);
-
-        switch (bitlen) {
-        case 0: {
-            u32 results[3] = {0, 32, 63};
-            result = results[D];
-        } break;
-
-        case 1: {
-            C = 50;
-        } break;
-
-        case 2: {
-            C = 23;
-            u32 b = (bitval >> 1) & 1;
-            B = (b << 6) | (b << 2) | b;
-        } break;
-
-        case 3: {
-            C = 11;
-            u32 cb = (bitval >> 1) & 3;
-            B = (cb << 5) | cb;
-        } break;
-
-        default:
-            assert(false && "Invalid trit encoding for texel weight");
-            break;
-        }
-    } break;
-
-    case IntegerEncoding::Qus32: {
-        D = val.qus32_value;
-        assert(D < 5);
-
-        switch (bitlen) {
-        case 0: {
-            u32 results[5] = {0, 16, 32, 47, 63};
-            result = results[D];
-        } break;
-
-        case 1: {
-            C = 28;
-        } break;
-
-        case 2: {
-            C = 13;
-            u32 b = (bitval >> 1) & 1;
-            B = (b << 6) | (b << 1);
-        } break;
-
-        default:
-            assert(false && "Invalid quint encoding for texel weight");
-            break;
-        }
-    } break;
-    }
-
-    if (val.encoding != IntegerEncoding::JustBits && bitlen > 0) {
-        // Decode the value...
-        result = D * C + B;
-        result ^= A;
-        result = (A & 0x20) | (result >> 2);
-    }
-
-    assert(result < 64);
-
-    // Change from [0,63] to [0,64]
-    if (result > 32) {
-        result += 1;
-    }
-
-    return result;
-}
-
-static void UnquantizeTexelWeights(u32 out[2][144], const IntegerEncodedVector& weights,
-                                   const TexelWeightParams& params, const u32 blockWidth,
-                                   const u32 blockHeight) {
-    u32 weightIdx = 0;
-    u32 unquantized[2][144];
-
-    for (auto itr = weights.begin(); itr != weights.end(); ++itr) {
-        unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
-
-        if (params.m_bDualPlane) {
-            ++itr;
-            unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
-            if (itr == weights.end()) {
-                break;
-            }
-        }
-
-        if (++weightIdx >= (params.m_Width * params.m_Height))
-            break;
-    }
-
-    // Do infill if necessary (Section C.2.18) ...
-    u32 Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
-    u32 Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);
-
-    const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U;
-    for (u32 plane = 0; plane < kPlaneScale; plane++)
-        for (u32 t = 0; t < blockHeight; t++)
-            for (u32 s = 0; s < blockWidth; s++) {
-                u32 cs = Ds * s;
-                u32 ct = Dt * t;
-
-                u32 gs = (cs * (params.m_Width - 1) + 32) >> 6;
-                u32 gt = (ct * (params.m_Height - 1) + 32) >> 6;
-
-                u32 js = gs >> 4;
-                u32 fs = gs & 0xF;
-
-                u32 jt = gt >> 4;
-                u32 ft = gt & 0x0F;
-
-                u32 w11 = (fs * ft + 8) >> 4;
-                u32 w10 = ft - w11;
-                u32 w01 = fs - w11;
-                u32 w00 = 16 - fs - ft + w11;
-
-                u32 v0 = js + jt * params.m_Width;
-
-#define FIND_TEXEL(tidx, bidx)                                                                     \
-    u32 p##bidx = 0;                                                                               \
-    do {                                                                                           \
-        if ((tidx) < (params.m_Width * params.m_Height)) {                                         \
-            p##bidx = unquantized[plane][(tidx)];                                                  \
-        }                                                                                          \
-    } while (0)
-
-                FIND_TEXEL(v0, 00);
-                FIND_TEXEL(v0 + 1, 01);
-                FIND_TEXEL(v0 + params.m_Width, 10);
-                FIND_TEXEL(v0 + params.m_Width + 1, 11);
-
-#undef FIND_TEXEL
-
-                out[plane][t * blockWidth + s] =
-                    (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4;
-            }
-}
-
-// Transfers a bit as described in C.2.14
-static inline void BitTransferSigned(s32& a, s32& b) {
-    b >>= 1;
-    b |= a & 0x80;
-    a >>= 1;
-    a &= 0x3F;
-    if (a & 0x20)
-        a -= 0x40;
-}
-
-// Adds more precision to the blue channel as described
-// in C.2.14
-static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) {
-    return Pixel(static_cast<s16>(a), static_cast<s16>((r + b) >> 1),
-                 static_cast<s16>((g + b) >> 1), static_cast<s16>(b));
-}
-
-// Partition selection functions as specified in
-// C.2.21
-static inline u32 hash52(u32 p) {
-    p ^= p >> 15;
-    p -= p << 17;
-    p += p << 7;
-    p += p << 4;
-    p ^= p >> 5;
-    p += p << 16;
-    p ^= p >> 7;
-    p ^= p >> 3;
-    p ^= p << 6;
-    p ^= p >> 17;
-    return p;
-}
-
-static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) {
-    if (1 == partitionCount)
-        return 0;
-
-    if (smallBlock) {
-        x <<= 1;
-        y <<= 1;
-        z <<= 1;
-    }
-
-    seed += (partitionCount - 1) * 1024;
-
-    u32 rnum = hash52(static_cast<u32>(seed));
-    u8 seed1 = static_cast<u8>(rnum & 0xF);
-    u8 seed2 = static_cast<u8>((rnum >> 4) & 0xF);
-    u8 seed3 = static_cast<u8>((rnum >> 8) & 0xF);
-    u8 seed4 = static_cast<u8>((rnum >> 12) & 0xF);
-    u8 seed5 = static_cast<u8>((rnum >> 16) & 0xF);
-    u8 seed6 = static_cast<u8>((rnum >> 20) & 0xF);
-    u8 seed7 = static_cast<u8>((rnum >> 24) & 0xF);
-    u8 seed8 = static_cast<u8>((rnum >> 28) & 0xF);
-    u8 seed9 = static_cast<u8>((rnum >> 18) & 0xF);
-    u8 seed10 = static_cast<u8>((rnum >> 22) & 0xF);
-    u8 seed11 = static_cast<u8>((rnum >> 26) & 0xF);
-    u8 seed12 = static_cast<u8>(((rnum >> 30) | (rnum << 2)) & 0xF);
-
-    seed1 = static_cast<u8>(seed1 * seed1);
-    seed2 = static_cast<u8>(seed2 * seed2);
-    seed3 = static_cast<u8>(seed3 * seed3);
-    seed4 = static_cast<u8>(seed4 * seed4);
-    seed5 = static_cast<u8>(seed5 * seed5);
-    seed6 = static_cast<u8>(seed6 * seed6);
-    seed7 = static_cast<u8>(seed7 * seed7);
-    seed8 = static_cast<u8>(seed8 * seed8);
-    seed9 = static_cast<u8>(seed9 * seed9);
-    seed10 = static_cast<u8>(seed10 * seed10);
-    seed11 = static_cast<u8>(seed11 * seed11);
-    seed12 = static_cast<u8>(seed12 * seed12);
-
-    s32 sh1, sh2, sh3;
-    if (seed & 1) {
-        sh1 = (seed & 2) ? 4 : 5;
-        sh2 = (partitionCount == 3) ? 6 : 5;
-    } else {
-        sh1 = (partitionCount == 3) ? 6 : 5;
-        sh2 = (seed & 2) ? 4 : 5;
-    }
-    sh3 = (seed & 0x10) ? sh1 : sh2;
-
-    seed1 = static_cast<u8>(seed1 >> sh1);
-    seed2 = static_cast<u8>(seed2 >> sh2);
-    seed3 = static_cast<u8>(seed3 >> sh1);
-    seed4 = static_cast<u8>(seed4 >> sh2);
-    seed5 = static_cast<u8>(seed5 >> sh1);
-    seed6 = static_cast<u8>(seed6 >> sh2);
-    seed7 = static_cast<u8>(seed7 >> sh1);
-    seed8 = static_cast<u8>(seed8 >> sh2);
-    seed9 = static_cast<u8>(seed9 >> sh3);
-    seed10 = static_cast<u8>(seed10 >> sh3);
-    seed11 = static_cast<u8>(seed11 >> sh3);
-    seed12 = static_cast<u8>(seed12 >> sh3);
-
-    s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
-    s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
-    s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
-    s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
-
-    a &= 0x3F;
-    b &= 0x3F;
-    c &= 0x3F;
-    d &= 0x3F;
-
-    if (partitionCount < 4)
-        d = 0;
-    if (partitionCount < 3)
-        c = 0;
-
-    if (a >= b && a >= c && a >= d)
-        return 0;
-    else if (b >= c && b >= d)
-        return 1;
-    else if (c >= d)
-        return 2;
-    return 3;
-}
-
-static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) {
-    return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
-}
-
-// Section C.2.14
-static void ComputeEndpos32s(Pixel& ep1, Pixel& ep2, const u32*& colorValues,
-                             u32 colorEndpos32Mode) {
-#define READ_UINT_VALUES(N)                                                                        \
-    u32 v[N];                                                                                      \
-    for (u32 i = 0; i < N; i++) {                                                                  \
-        v[i] = *(colorValues++);                                                                   \
-    }
-
-#define READ_INT_VALUES(N)                                                                         \
-    s32 v[N];                                                                                      \
-    for (u32 i = 0; i < N; i++) {                                                                  \
-        v[i] = static_cast<s32>(*(colorValues++));                                                 \
-    }
-
-    switch (colorEndpos32Mode) {
-    case 0: {
-        READ_UINT_VALUES(2)
-        ep1 = Pixel(0xFF, v[0], v[0], v[0]);
-        ep2 = Pixel(0xFF, v[1], v[1], v[1]);
-    } break;
-
-    case 1: {
-        READ_UINT_VALUES(2)
-        u32 L0 = (v[0] >> 2) | (v[1] & 0xC0);
-        u32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
-        ep1 = Pixel(0xFF, L0, L0, L0);
-        ep2 = Pixel(0xFF, L1, L1, L1);
-    } break;
-
-    case 4: {
-        READ_UINT_VALUES(4)
-        ep1 = Pixel(v[2], v[0], v[0], v[0]);
-        ep2 = Pixel(v[3], v[1], v[1], v[1]);
-    } break;
-
-    case 5: {
-        READ_INT_VALUES(4)
-        BitTransferSigned(v[1], v[0]);
-        BitTransferSigned(v[3], v[2]);
-        ep1 = Pixel(v[2], v[0], v[0], v[0]);
-        ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]);
-        ep1.ClampByte();
-        ep2.ClampByte();
-    } break;
-
-    case 6: {
-        READ_UINT_VALUES(4)
-        ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
-        ep2 = Pixel(0xFF, v[0], v[1], v[2]);
-    } break;
-
-    case 8: {
-        READ_UINT_VALUES(6)
-        if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
-            ep1 = Pixel(0xFF, v[0], v[2], v[4]);
-            ep2 = Pixel(0xFF, v[1], v[3], v[5]);
-        } else {
-            ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
-            ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
-        }
-    } break;
-
-    case 9: {
-        READ_INT_VALUES(6)
-        BitTransferSigned(v[1], v[0]);
-        BitTransferSigned(v[3], v[2]);
-        BitTransferSigned(v[5], v[4]);
-        if (v[1] + v[3] + v[5] >= 0) {
-            ep1 = Pixel(0xFF, v[0], v[2], v[4]);
-            ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
-        } else {
-            ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
-            ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
-        }
-        ep1.ClampByte();
-        ep2.ClampByte();
-    } break;
-
-    case 10: {
-        READ_UINT_VALUES(6)
-        ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
-        ep2 = Pixel(v[5], v[0], v[1], v[2]);
-    } break;
-
-    case 12: {
-        READ_UINT_VALUES(8)
-        if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
-            ep1 = Pixel(v[6], v[0], v[2], v[4]);
-            ep2 = Pixel(v[7], v[1], v[3], v[5]);
-        } else {
-            ep1 = BlueContract(v[7], v[1], v[3], v[5]);
-            ep2 = BlueContract(v[6], v[0], v[2], v[4]);
-        }
-    } break;
-
-    case 13: {
-        READ_INT_VALUES(8)
-        BitTransferSigned(v[1], v[0]);
-        BitTransferSigned(v[3], v[2]);
-        BitTransferSigned(v[5], v[4]);
-        BitTransferSigned(v[7], v[6]);
-        if (v[1] + v[3] + v[5] >= 0) {
-            ep1 = Pixel(v[6], v[0], v[2], v[4]);
-            ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
-        } else {
-            ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
-            ep2 = BlueContract(v[6], v[0], v[2], v[4]);
-        }
-        ep1.ClampByte();
-        ep2.ClampByte();
-    } break;
-
-    default:
-        assert(false && "Unsupported color endpoint mode (is it HDR?)");
-        break;
-    }
-
-#undef READ_UINT_VALUES
-#undef READ_INT_VALUES
-}
-
-static void DecompressBlock(std::span<const u8, 16> inBuf, const u32 blockWidth,
-                            const u32 blockHeight, std::span<u32, 12 * 12> outBuf) {
-    InputBitStream strm(inBuf);
-    TexelWeightParams weightParams = DecodeBlockInfo(strm);
-
-    // Was there an error?
-    if (weightParams.m_bError) {
-        assert(false && "Invalid block mode");
-        FillError(outBuf, blockWidth, blockHeight);
-        return;
-    }
-
-    if (weightParams.m_bVoidExtentLDR) {
-        FillVoidExtentLDR(strm, outBuf, blockWidth, blockHeight);
-        return;
-    }
-
-    if (weightParams.m_bVoidExtentHDR) {
-        assert(false && "HDR void extent blocks are unsupported!");
-        FillError(outBuf, blockWidth, blockHeight);
-        return;
-    }
-
-    if (weightParams.m_Width > blockWidth) {
-        assert(false && "Texel weight grid width should be smaller than block width");
-        FillError(outBuf, blockWidth, blockHeight);
-        return;
-    }
-
-    if (weightParams.m_Height > blockHeight) {
-        assert(false && "Texel weight grid height should be smaller than block height");
-        FillError(outBuf, blockWidth, blockHeight);
-        return;
-    }
-
-    // Read num partitions
-    u32 nPartitions = strm.ReadBits<2>() + 1;
-    assert(nPartitions <= 4);
-
-    if (nPartitions == 4 && weightParams.m_bDualPlane) {
-        assert(false && "Dual plane mode is incompatible with four partition blocks");
-        FillError(outBuf, blockWidth, blockHeight);
-        return;
-    }
-
-    // Based on the number of partitions, read the color endpos32 mode for
-    // each partition.
-
-    // Determine partitions, partition index, and color endpos32 modes
-    s32 planeIdx = -1;
-    u32 partitionIndex;
-    u32 colorEndpos32Mode[4] = {0, 0, 0, 0};
-
-    // Define color data.
-    u8 colorEndpos32Data[16];
-    memset(colorEndpos32Data, 0, sizeof(colorEndpos32Data));
-    OutputBitStream colorEndpos32Stream(colorEndpos32Data, 16 * 8, 0);
-
-    // Read extra config data...
-    u32 baseCEM = 0;
-    if (nPartitions == 1) {
-        colorEndpos32Mode[0] = strm.ReadBits<4>();
-        partitionIndex = 0;
-    } else {
-        partitionIndex = strm.ReadBits<10>();
-        baseCEM = strm.ReadBits<6>();
-    }
-    u32 baseMode = (baseCEM & 3);
-
-    // Remaining bits are color endpos32 data...
-    u32 nWeightBits = weightParams.GetPackedBitSize();
-    s32 remainingBits = 128 - nWeightBits - static_cast<s32>(strm.GetBitsRead());
-
-    // Consider extra bits prior to texel data...
-    u32 extraCEMbits = 0;
-    if (baseMode) {
-        switch (nPartitions) {
-        case 2:
-            extraCEMbits += 2;
-            break;
-        case 3:
-            extraCEMbits += 5;
-            break;
-        case 4:
-            extraCEMbits += 8;
-            break;
-        default:
-            assert(false);
-            break;
-        }
-    }
-    remainingBits -= extraCEMbits;
-
-    // Do we have a dual plane situation?
-    u32 planeSelectorBits = 0;
-    if (weightParams.m_bDualPlane) {
-        planeSelectorBits = 2;
-    }
-    remainingBits -= planeSelectorBits;
-
-    // Read color data...
-    u32 colorDataBits = remainingBits;
-    while (remainingBits > 0) {
-        u32 nb = std::min(remainingBits, 8);
-        u32 b = strm.ReadBits(nb);
-        colorEndpos32Stream.WriteBits(b, nb);
-        remainingBits -= 8;
-    }
-
-    // Read the plane selection bits
-    planeIdx = strm.ReadBits(planeSelectorBits);
-
-    // Read the rest of the CEM
-    if (baseMode) {
-        u32 extraCEM = strm.ReadBits(extraCEMbits);
-        u32 CEM = (extraCEM << 6) | baseCEM;
-        CEM >>= 2;
-
-        bool C[4] = {0};
-        for (u32 i = 0; i < nPartitions; i++) {
-            C[i] = CEM & 1;
-            CEM >>= 1;
-        }
-
-        u8 M[4] = {0};
-        for (u32 i = 0; i < nPartitions; i++) {
-            M[i] = CEM & 3;
-            CEM >>= 2;
-            assert(M[i] <= 3);
-        }
-
-        for (u32 i = 0; i < nPartitions; i++) {
-            colorEndpos32Mode[i] = baseMode;
-            if (!(C[i]))
-                colorEndpos32Mode[i] -= 1;
-            colorEndpos32Mode[i] <<= 2;
-            colorEndpos32Mode[i] |= M[i];
-        }
-    } else if (nPartitions > 1) {
-        u32 CEM = baseCEM >> 2;
-        for (u32 i = 0; i < nPartitions; i++) {
-            colorEndpos32Mode[i] = CEM;
-        }
-    }
-
-    // Make sure everything up till here is sane.
-    for (u32 i = 0; i < nPartitions; i++) {
-        assert(colorEndpos32Mode[i] < 16);
-    }
-    assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
-
-    // Decode both color data and texel weight data
-    u32 colorValues[32]; // Four values, two endpos32s, four maximum paritions
-    DecodeColorValues(colorValues, colorEndpos32Data, colorEndpos32Mode, nPartitions,
-                      colorDataBits);
-
-    Pixel endpos32s[4][2];
-    const u32* colorValuesPtr = colorValues;
-    for (u32 i = 0; i < nPartitions; i++) {
-        ComputeEndpos32s(endpos32s[i][0], endpos32s[i][1], colorValuesPtr, colorEndpos32Mode[i]);
-    }
-
-    // Read the texel weight data..
-    std::array<u8, 16> texelWeightData;
-    std::ranges::copy(inBuf, texelWeightData.begin());
-
-    // Reverse everything
-    for (u32 i = 0; i < 8; i++) {
-// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
-#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
-        u8 a = static_cast<u8>(REVERSE_BYTE(texelWeightData[i]));
-        u8 b = static_cast<u8>(REVERSE_BYTE(texelWeightData[15 - i]));
-#undef REVERSE_BYTE
-
-        texelWeightData[i] = b;
-        texelWeightData[15 - i] = a;
-    }
-
-    // Make sure that higher non-texel bits are set to zero
-    const u32 clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
-    if (clearByteStart > 0 && clearByteStart <= texelWeightData.size()) {
-        texelWeightData[clearByteStart - 1] &=
-            static_cast<u8>((1 << (weightParams.GetPackedBitSize() % 8)) - 1);
-        std::memset(texelWeightData.data() + clearByteStart, 0,
-                    std::min(16U - clearByteStart, 16U));
-    }
-
-    IntegerEncodedVector texelWeightValues;
-
-    InputBitStream weightStream(texelWeightData);
-
-    DecodeIntegerSequence(texelWeightValues, weightStream, weightParams.m_MaxWeight,
-                          weightParams.GetNumWeightValues());
-
-    // Blocks can be at most 12x12, so we can have as many as 144 weights
-    u32 weights[2][144];
-    UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
-
-    // Now that we have endpos32s and weights, we can s32erpolate and generate
-    // the proper decoding...
-    for (u32 j = 0; j < blockHeight; j++)
-        for (u32 i = 0; i < blockWidth; i++) {
-            u32 partition = Select2DPartition(partitionIndex, i, j, nPartitions,
-                                              (blockHeight * blockWidth) < 32);
-            assert(partition < nPartitions);
-
-            Pixel p;
-            for (u32 c = 0; c < 4; c++) {
-                u32 C0 = endpos32s[partition][0].Component(c);
-                C0 = ReplicateByteTo16(C0);
-                u32 C1 = endpos32s[partition][1].Component(c);
-                C1 = ReplicateByteTo16(C1);
-
-                u32 plane = 0;
-                if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
-                    plane = 1;
-                }
-
-                u32 weight = weights[plane][j * blockWidth + i];
-                u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
-                if (C == 65535) {
-                    p.Component(c) = 255;
-                } else {
-                    double Cf = static_cast<double>(C);
-                    p.Component(c) = static_cast<u16>(255.0 * (Cf / 65536.0) + 0.5);
-                }
-            }
-
-            outBuf[j * blockWidth + i] = p.Pack();
-        }
-}
-
-} // namespace ASTCC
-
-namespace Tegra::Texture::ASTC {
-
-void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth,
-                uint32_t block_width, uint32_t block_height, std::span<uint8_t> output) {
-    u32 block_index = 0;
-    std::size_t depth_offset = 0;
-    for (u32 z = 0; z < depth; z++) {
-        for (u32 y = 0; y < height; y += block_height) {
-            for (u32 x = 0; x < width; x += block_width) {
-                const std::span<const u8, 16> blockPtr{data.subspan(block_index * 16, 16)};
-
-                // Blocks can be at most 12x12
-                std::array<u32, 12 * 12> uncompData;
-                ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData);
-
-                u32 decompWidth = std::min(block_width, width - x);
-                u32 decompHeight = std::min(block_height, height - y);
-
-                const std::span<u8> outRow = output.subspan(depth_offset + (y * width + x) * 4);
-                for (u32 jj = 0; jj < decompHeight; jj++) {
-                    std::memcpy(outRow.data() + jj * width * 4,
-                                uncompData.data() + jj * block_width, decompWidth * 4);
-                }
-                ++block_index;
-            }
-        }
-        depth_offset += height * width * 4;
-    }
-}
-
-} // namespace Tegra::Texture::ASTC
diff --git a/src/video_core/textures/astc.h b/src/video_core/textures/astc.h
index 9105119bc..c1c73fda5 100644
--- a/src/video_core/textures/astc.h
+++ b/src/video_core/textures/astc.h
@@ -4,11 +4,129 @@
 
 #pragma once
 
-#include <cstdint>
+#include <bit>
+#include "common/common_types.h"
 
 namespace Tegra::Texture::ASTC {
 
-void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth,
-                uint32_t block_width, uint32_t block_height, std::span<uint8_t> output);
+enum class IntegerEncoding { JustBits, Quint, Trit };
+
+struct IntegerEncodedValue {
+    constexpr IntegerEncodedValue() = default;
+
+    constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_)
+        : encoding{encoding_}, num_bits{num_bits_} {}
+
+    constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const {
+        return encoding == other.encoding && num_bits == other.num_bits;
+    }
+
+    // Returns the number of bits required to encode num_vals values.
+    u32 GetBitLength(u32 num_vals) const {
+        u32 total_bits = num_bits * num_vals;
+        if (encoding == IntegerEncoding::Trit) {
+            total_bits += (num_vals * 8 + 4) / 5;
+        } else if (encoding == IntegerEncoding::Quint) {
+            total_bits += (num_vals * 7 + 2) / 3;
+        }
+        return total_bits;
+    }
+
+    IntegerEncoding encoding{};
+    u32 num_bits = 0;
+    u32 bit_value = 0;
+    union {
+        u32 quint_value = 0;
+        u32 trit_value;
+    };
+};
+
+// Returns a new instance of this struct that corresponds to the
+// can take no more than mav_value values
+constexpr IntegerEncodedValue CreateEncoding(u32 mav_value) {
+    while (mav_value > 0) {
+        u32 check = mav_value + 1;
+
+        // Is mav_value a power of two?
+        if (!(check & (check - 1))) {
+            return IntegerEncodedValue(IntegerEncoding::JustBits, std::popcount(mav_value));
+        }
+
+        // Is mav_value of the type 3*2^n - 1?
+        if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
+            return IntegerEncodedValue(IntegerEncoding::Trit, std::popcount(check / 3 - 1));
+        }
+
+        // Is mav_value of the type 5*2^n - 1?
+        if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
+            return IntegerEncodedValue(IntegerEncoding::Quint, std::popcount(check / 5 - 1));
+        }
+
+        // Apparently it can't be represented with a bounded integer sequence...
+        // just iterate.
+        mav_value--;
+    }
+    return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
+}
+
+constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
+    std::array<IntegerEncodedValue, 256> encodings{};
+    for (std::size_t i = 0; i < encodings.size(); ++i) {
+        encodings[i] = CreateEncoding(static_cast<u32>(i));
+    }
+    return encodings;
+}
+
+constexpr std::array<IntegerEncodedValue, 256> EncodingsValues = MakeEncodedValues();
+
+// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
+// is the same as [(num_bits - 1):0] and repeats all the way down.
+template <typename IntType>
+constexpr IntType Replicate(IntType val, u32 num_bits, u32 to_bit) {
+    if (num_bits == 0 || to_bit == 0) {
+        return 0;
+    }
+    const IntType v = val & static_cast<IntType>((1 << num_bits) - 1);
+    IntType res = v;
+    u32 reslen = num_bits;
+    while (reslen < to_bit) {
+        u32 comp = 0;
+        if (num_bits > to_bit - reslen) {
+            u32 newshift = to_bit - reslen;
+            comp = num_bits - newshift;
+            num_bits = newshift;
+        }
+        res = static_cast<IntType>(res << num_bits);
+        res = static_cast<IntType>(res | (v >> comp));
+        reslen += num_bits;
+    }
+    return res;
+}
+
+constexpr std::size_t NumReplicateEntries(u32 num_bits) {
+    return std::size_t(1) << num_bits;
+}
+
+template <typename IntType, u32 num_bits, u32 to_bit>
+constexpr auto MakeReplicateTable() {
+    std::array<IntType, NumReplicateEntries(num_bits)> table{};
+    for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) {
+        table[value] = Replicate(value, num_bits, to_bit);
+    }
+    return table;
+}
+
+constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>();
+constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
+constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
+constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
+
+struct AstcBufferData {
+    decltype(EncodingsValues) encoding_values = EncodingsValues;
+    decltype(REPLICATE_6_BIT_TO_8_TABLE) replicate_6_to_8 = REPLICATE_6_BIT_TO_8_TABLE;
+    decltype(REPLICATE_7_BIT_TO_8_TABLE) replicate_7_to_8 = REPLICATE_7_BIT_TO_8_TABLE;
+    decltype(REPLICATE_8_BIT_TO_8_TABLE) replicate_8_to_8 = REPLICATE_8_BIT_TO_8_TABLE;
+    decltype(REPLICATE_BYTE_TO_16_TABLE) replicate_byte_to_16 = REPLICATE_BYTE_TO_16_TABLE;
+} constexpr ASTC_BUFFER_DATA;
 
 } // namespace Tegra::Texture::ASTC
diff --git a/src/video_core/textures/decoders.cpp b/src/video_core/textures/decoders.cpp
index 62685a183..3a463d5db 100644
--- a/src/video_core/textures/decoders.cpp
+++ b/src/video_core/textures/decoders.cpp
@@ -17,26 +17,7 @@
 #include "video_core/textures/texture.h"
 
 namespace Tegra::Texture {
-
 namespace {
-/**
- * This table represents the internal swizzle of a gob, in format 16 bytes x 2 sector packing.
- * Calculates the offset of an (x, y) position within a swizzled texture.
- * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188
- */
-constexpr SwizzleTable MakeSwizzleTableConst() {
-    SwizzleTable table{};
-    for (u32 y = 0; y < table.size(); ++y) {
-        for (u32 x = 0; x < table[0].size(); ++x) {
-            table[y][x] = ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 +
-                          (y % 2) * 16 + (x % 16);
-        }
-    }
-    return table;
-}
-
-constexpr SwizzleTable SWIZZLE_TABLE = MakeSwizzleTableConst();
-
 template <bool TO_LINEAR>
 void Swizzle(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, u32 width,
              u32 height, u32 depth, u32 block_height, u32 block_depth, u32 stride_alignment) {
@@ -91,10 +72,6 @@ void Swizzle(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixe
 }
 } // Anonymous namespace
 
-SwizzleTable MakeSwizzleTable() {
-    return SWIZZLE_TABLE;
-}
-
 void UnswizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel,
                       u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth,
                       u32 stride_alignment) {
diff --git a/src/video_core/textures/decoders.h b/src/video_core/textures/decoders.h
index d7cdc81e8..4c14cefbf 100644
--- a/src/video_core/textures/decoders.h
+++ b/src/video_core/textures/decoders.h
@@ -23,8 +23,22 @@ constexpr u32 GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT + GOB_SIZE_Z_
 
 using SwizzleTable = std::array<std::array<u32, GOB_SIZE_X>, GOB_SIZE_Y>;
 
-/// Returns a z-order swizzle table
-SwizzleTable MakeSwizzleTable();
+/**
+ * This table represents the internal swizzle of a gob, in format 16 bytes x 2 sector packing.
+ * Calculates the offset of an (x, y) position within a swizzled texture.
+ * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188
+ */
+constexpr SwizzleTable MakeSwizzleTable() {
+    SwizzleTable table{};
+    for (u32 y = 0; y < table.size(); ++y) {
+        for (u32 x = 0; x < table[0].size(); ++x) {
+            table[y][x] = ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 +
+                          (y % 2) * 16 + (x % 16);
+        }
+    }
+    return table;
+}
+constexpr SwizzleTable SWIZZLE_TABLE = MakeSwizzleTable();
 
 /// Unswizzles a block linear texture into linear memory.
 void UnswizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel,