gpu: Move command processing to another thread.

This commit is contained in:
bunnei 2019-01-23 22:17:55 -05:00
parent 65651078e5
commit 7b574f406b
9 changed files with 358 additions and 15 deletions

View File

@ -178,7 +178,7 @@ u32 nvhost_as_gpu::UnmapBuffer(const std::vector<u8>& input, std::vector<u8>& ou
auto& gpu = system_instance.GPU();
auto cpu_addr = gpu.MemoryManager().GpuToCpuAddress(params.offset);
ASSERT(cpu_addr);
system_instance.Renderer().Rasterizer().FlushAndInvalidateRegion(*cpu_addr, itr->second.size);
gpu.FlushAndInvalidateRegion(*cpu_addr, itr->second.size);
params.offset = gpu.MemoryManager().UnmapBuffer(params.offset, itr->second.size);

View File

@ -356,16 +356,16 @@ void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) {
const VAddr overlap_end = std::min(end, region_end);
const VAddr overlap_size = overlap_end - overlap_start;
auto& rasterizer = system_instance.Renderer().Rasterizer();
auto& gpu = system_instance.GPU();
switch (mode) {
case FlushMode::Flush:
rasterizer.FlushRegion(overlap_start, overlap_size);
gpu.FlushRegion(overlap_start, overlap_size);
break;
case FlushMode::Invalidate:
rasterizer.InvalidateRegion(overlap_start, overlap_size);
gpu.InvalidateRegion(overlap_start, overlap_size);
break;
case FlushMode::FlushAndInvalidate:
rasterizer.FlushAndInvalidateRegion(overlap_start, overlap_size);
gpu.FlushAndInvalidateRegion(overlap_start, overlap_size);
break;
}
};

View File

@ -17,6 +17,8 @@ add_library(video_core STATIC
engines/shader_header.h
gpu.cpp
gpu.h
gpu_thread.cpp
gpu_thread.h
macro_interpreter.cpp
macro_interpreter.h
memory_manager.cpp

View File

@ -48,7 +48,7 @@ void KeplerMemory::ProcessData(u32 data) {
// We have to invalidate the destination region to evict any outdated surfaces from the cache.
// We do this before actually writing the new data because the destination address might contain
// a dirty surface that will have to be written back to memory.
rasterizer.InvalidateRegion(*dest_address, sizeof(u32));
Core::System::GetInstance().GPU().InvalidateRegion(*dest_address, sizeof(u32));
Memory::Write32(*dest_address, data);
system.GPU().Maxwell3D().dirty_flags.OnMemoryWrite();

View File

@ -92,12 +92,12 @@ void MaxwellDMA::HandleCopy() {
const auto FlushAndInvalidate = [&](u32 src_size, u64 dst_size) {
// TODO(Subv): For now, manually flush the regions until we implement GPU-accelerated
// copying.
rasterizer.FlushRegion(*source_cpu, src_size);
Core::System::GetInstance().GPU().FlushRegion(*source_cpu, src_size);
// We have to invalidate the destination region to evict any outdated surfaces from the
// cache. We do this before actually writing the new data because the destination address
// might contain a dirty surface that will have to be written back to memory.
rasterizer.InvalidateRegion(*dest_cpu, dst_size);
Core::System::GetInstance().GPU().InvalidateRegion(*dest_cpu, dst_size);
};
if (regs.exec.is_dst_linear && !regs.exec.is_src_linear) {

View File

@ -6,12 +6,14 @@
#include "core/core.h"
#include "core/core_timing.h"
#include "core/memory.h"
#include "core/settings.h"
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/kepler_compute.h"
#include "video_core/engines/kepler_memory.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/gpu.h"
#include "video_core/gpu_thread.h"
#include "video_core/renderer_base.h"
namespace Tegra {
@ -37,6 +39,10 @@ GPU::GPU(Core::System& system, VideoCore::RendererBase& renderer) : renderer{ren
kepler_compute = std::make_unique<Engines::KeplerCompute>(*memory_manager);
maxwell_dma = std::make_unique<Engines::MaxwellDMA>(system, rasterizer, *memory_manager);
kepler_memory = std::make_unique<Engines::KeplerMemory>(system, rasterizer, *memory_manager);
if (Settings::values.use_asynchronous_gpu_emulation) {
gpu_thread = std::make_unique<VideoCommon::GPUThread::ThreadManager>(renderer, *dma_pusher);
}
}
GPU::~GPU() = default;
@ -66,13 +72,45 @@ const DmaPusher& GPU::DmaPusher() const {
}
void GPU::PushGPUEntries(Tegra::CommandList&& entries) {
dma_pusher->Push(std::move(entries));
dma_pusher->DispatchCalls();
if (Settings::values.use_asynchronous_gpu_emulation) {
gpu_thread->SubmitList(std::move(entries));
} else {
dma_pusher->Push(std::move(entries));
dma_pusher->DispatchCalls();
}
}
void GPU::SwapBuffers(
std::optional<std::reference_wrapper<const Tegra::FramebufferConfig>> framebuffer) {
renderer.SwapBuffers(std::move(framebuffer));
if (Settings::values.use_asynchronous_gpu_emulation) {
gpu_thread->SwapBuffers(std::move(framebuffer));
} else {
renderer.SwapBuffers(std::move(framebuffer));
}
}
void GPU::FlushRegion(VAddr addr, u64 size) {
if (Settings::values.use_asynchronous_gpu_emulation) {
gpu_thread->FlushRegion(addr, size);
} else {
renderer.Rasterizer().FlushRegion(addr, size);
}
}
void GPU::InvalidateRegion(VAddr addr, u64 size) {
if (Settings::values.use_asynchronous_gpu_emulation) {
gpu_thread->InvalidateRegion(addr, size);
} else {
renderer.Rasterizer().InvalidateRegion(addr, size);
}
}
void GPU::FlushAndInvalidateRegion(VAddr addr, u64 size) {
if (Settings::values.use_asynchronous_gpu_emulation) {
gpu_thread->FlushAndInvalidateRegion(addr, size);
} else {
renderer.Rasterizer().FlushAndInvalidateRegion(addr, size);
}
}
u32 RenderTargetBytesPerPixel(RenderTargetFormat format) {

View File

@ -19,6 +19,10 @@ namespace VideoCore {
class RendererBase;
} // namespace VideoCore
namespace VideoCommon::GPUThread {
class ThreadManager;
} // namespace VideoCommon::GPUThread
namespace Tegra {
enum class RenderTargetFormat : u32 {
@ -200,7 +204,7 @@ public:
std::array<u32, NUM_REGS> reg_array;
};
} regs{};
/// Push GPU command entries to be processed
void PushGPUEntries(Tegra::CommandList&& entries);
@ -208,6 +212,15 @@ public:
void SwapBuffers(
std::optional<std::reference_wrapper<const Tegra::FramebufferConfig>> framebuffer);
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
void FlushRegion(VAddr addr, u64 size);
/// Notify rasterizer that any caches of the specified region should be invalidated
void InvalidateRegion(VAddr addr, u64 size);
/// Notify rasterizer that any caches of the specified region should be flushed and invalidated
void FlushAndInvalidateRegion(VAddr addr, u64 size);
private:
void ProcessBindMethod(const MethodCall& method_call);
void ProcessSemaphoreTriggerMethod();
@ -216,17 +229,18 @@ private:
/// Calls a GPU puller method.
void CallPullerMethod(const MethodCall& method_call);
/// Calls a GPU engine method.
void CallEngineMethod(const MethodCall& method_call);
/// Determines where the method should be executed.
bool ExecuteMethodOnEngine(const MethodCall& method_call);
private:
std::unique_ptr<Tegra::DmaPusher> dma_pusher;
std::unique_ptr<Tegra::MemoryManager> memory_manager;
std::unique_ptr<VideoCommon::GPUThread::ThreadManager> gpu_thread;
VideoCore::RendererBase& renderer;
/// Mapping of command subchannels to their bound engine ids.

View File

@ -0,0 +1,154 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/assert.h"
#include "common/microprofile.h"
#include "core/frontend/scope_acquire_window_context.h"
#include "core/settings.h"
#include "video_core/dma_pusher.h"
#include "video_core/gpu.h"
#include "video_core/gpu_thread.h"
#include "video_core/renderer_base.h"
namespace VideoCommon::GPUThread {
/// Executes a single GPU thread command
static void ExecuteCommand(CommandData* command, VideoCore::RendererBase& renderer,
Tegra::DmaPusher& dma_pusher) {
if (const auto submit_list = std::get_if<SubmitListCommand>(command)) {
dma_pusher.Push(std::move(submit_list->entries));
dma_pusher.DispatchCalls();
} else if (const auto data = std::get_if<SwapBuffersCommand>(command)) {
renderer.SwapBuffers(data->framebuffer);
} else if (const auto data = std::get_if<FlushRegionCommand>(command)) {
renderer.Rasterizer().FlushRegion(data->addr, data->size);
} else if (const auto data = std::get_if<InvalidateRegionCommand>(command)) {
renderer.Rasterizer().InvalidateRegion(data->addr, data->size);
} else if (const auto data = std::get_if<FlushAndInvalidateRegionCommand>(command)) {
renderer.Rasterizer().FlushAndInvalidateRegion(data->addr, data->size);
} else {
UNREACHABLE();
}
}
/// Runs the GPU thread
static void RunThread(VideoCore::RendererBase& renderer, Tegra::DmaPusher& dma_pusher,
SynchState& state) {
MicroProfileOnThreadCreate("GpuThread");
auto WaitForWakeup = [&]() {
std::unique_lock<std::mutex> lock{state.signal_mutex};
state.signal_condition.wait(lock, [&] { return !state.IsIdle() || !state.is_running; });
};
// Wait for first GPU command before acquiring the window context
WaitForWakeup();
// If emulation was stopped during disk shader loading, abort before trying to acquire context
if (!state.is_running) {
return;
}
Core::Frontend::ScopeAcquireWindowContext acquire_context{renderer.GetRenderWindow()};
while (state.is_running) {
if (!state.is_running) {
return;
}
{
// Thread has been woken up, so make the previous write queue the next read queue
std::lock_guard<std::mutex> lock{state.signal_mutex};
std::swap(state.push_queue, state.pop_queue);
}
// Execute all of the GPU commands
while (!state.pop_queue->empty()) {
ExecuteCommand(&state.pop_queue->front(), renderer, dma_pusher);
state.pop_queue->pop();
}
// Signal that the GPU thread has finished processing commands
if (state.IsIdle()) {
state.idle_condition.notify_one();
}
// Wait for CPU thread to send more GPU commands
WaitForWakeup();
}
}
ThreadManager::ThreadManager(VideoCore::RendererBase& renderer, Tegra::DmaPusher& dma_pusher)
: renderer{renderer}, dma_pusher{dma_pusher}, thread{RunThread, std::ref(renderer),
std::ref(dma_pusher), std::ref(state)},
thread_id{thread.get_id()} {}
ThreadManager::~ThreadManager() {
{
// Notify GPU thread that a shutdown is pending
std::lock_guard<std::mutex> lock{state.signal_mutex};
state.is_running = false;
}
state.signal_condition.notify_one();
thread.join();
}
void ThreadManager::SubmitList(Tegra::CommandList&& entries) {
if (entries.empty()) {
return;
}
PushCommand(SubmitListCommand(std::move(entries)), false, false);
}
void ThreadManager::SwapBuffers(
std::optional<std::reference_wrapper<const Tegra::FramebufferConfig>> framebuffer) {
PushCommand(SwapBuffersCommand(std::move(framebuffer)), true, false);
}
void ThreadManager::FlushRegion(VAddr addr, u64 size) {
if (Settings::values.use_accurate_gpu_emulation) {
PushCommand(FlushRegionCommand(addr, size), true, false);
}
}
void ThreadManager::InvalidateRegion(VAddr addr, u64 size) {
PushCommand(InvalidateRegionCommand(addr, size), true, true);
}
void ThreadManager::FlushAndInvalidateRegion(VAddr addr, u64 size) {
if (Settings::values.use_accurate_gpu_emulation) {
PushCommand(FlushAndInvalidateRegionCommand(addr, size), true, false);
} else {
InvalidateRegion(addr, size);
}
}
void ThreadManager::PushCommand(CommandData&& command_data, bool wait_for_idle, bool allow_on_cpu) {
{
std::lock_guard<std::mutex> lock{state.signal_mutex};
if ((allow_on_cpu && state.IsIdle()) || IsGpuThread()) {
// Execute the command synchronously on the current thread
ExecuteCommand(&command_data, renderer, dma_pusher);
return;
}
// Push the command to the GPU thread
state.push_queue->emplace(command_data);
}
// Signal the GPU thread that commands are pending
state.signal_condition.notify_one();
if (wait_for_idle) {
// Wait for the GPU to be idle (all commands to be executed)
std::unique_lock<std::mutex> lock{state.idle_mutex};
state.idle_condition.wait(lock, [this] { return state.IsIdle(); });
}
}
} // namespace VideoCommon::GPUThread

135
src/video_core/gpu_thread.h Normal file
View File

@ -0,0 +1,135 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <atomic>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <optional>
#include <thread>
#include <variant>
namespace Tegra {
struct FramebufferConfig;
class DmaPusher;
} // namespace Tegra
namespace VideoCore {
class RendererBase;
} // namespace VideoCore
namespace VideoCommon::GPUThread {
/// Command to signal to the GPU thread that a command list is ready for processing
struct SubmitListCommand final {
explicit SubmitListCommand(Tegra::CommandList&& entries) : entries{std::move(entries)} {}
Tegra::CommandList entries;
};
/// Command to signal to the GPU thread that a swap buffers is pending
struct SwapBuffersCommand final {
explicit SwapBuffersCommand(std::optional<const Tegra::FramebufferConfig> framebuffer)
: framebuffer{std::move(framebuffer)} {}
std::optional<const Tegra::FramebufferConfig> framebuffer;
};
/// Command to signal to the GPU thread to flush a region
struct FlushRegionCommand final {
explicit constexpr FlushRegionCommand(VAddr addr, u64 size) : addr{addr}, size{size} {}
const VAddr addr;
const u64 size;
};
/// Command to signal to the GPU thread to invalidate a region
struct InvalidateRegionCommand final {
explicit constexpr InvalidateRegionCommand(VAddr addr, u64 size) : addr{addr}, size{size} {}
const VAddr addr;
const u64 size;
};
/// Command to signal to the GPU thread to flush and invalidate a region
struct FlushAndInvalidateRegionCommand final {
explicit constexpr FlushAndInvalidateRegionCommand(VAddr addr, u64 size)
: addr{addr}, size{size} {}
const VAddr addr;
const u64 size;
};
using CommandData = std::variant<SubmitListCommand, SwapBuffersCommand, FlushRegionCommand,
InvalidateRegionCommand, FlushAndInvalidateRegionCommand>;
/// Struct used to synchronize the GPU thread
struct SynchState final {
std::atomic<bool> is_running{true};
std::condition_variable signal_condition;
std::mutex signal_mutex;
std::condition_variable idle_condition;
std::mutex idle_mutex;
// We use two queues for sending commands to the GPU thread, one for writing (push_queue) to and
// one for reading from (pop_queue). These are swapped whenever the current pop_queue becomes
// empty. This allows for efficient thread-safe access, as it does not require any copies.
using CommandQueue = std::queue<CommandData>;
std::array<CommandQueue, 2> command_queues;
CommandQueue* push_queue{&command_queues[0]};
CommandQueue* pop_queue{&command_queues[1]};
/// Returns true if the GPU thread should be idle, meaning there are no commands to process
bool IsIdle() const {
return command_queues[0].empty() && command_queues[1].empty();
}
};
/// Class used to manage the GPU thread
class ThreadManager final {
public:
explicit ThreadManager(VideoCore::RendererBase& renderer, Tegra::DmaPusher& dma_pusher);
~ThreadManager();
/// Push GPU command entries to be processed
void SubmitList(Tegra::CommandList&& entries);
/// Swap buffers (render frame)
void SwapBuffers(
std::optional<std::reference_wrapper<const Tegra::FramebufferConfig>> framebuffer);
/// Notify rasterizer that any caches of the specified region should be flushed to Switch memory
void FlushRegion(VAddr addr, u64 size);
/// Notify rasterizer that any caches of the specified region should be invalidated
void InvalidateRegion(VAddr addr, u64 size);
/// Notify rasterizer that any caches of the specified region should be flushed and invalidated
void FlushAndInvalidateRegion(VAddr addr, u64 size);
/// Waits the caller until the GPU thread is idle, used for synchronization
void WaitForIdle();
private:
/// Pushes a command to be executed by the GPU thread
void PushCommand(CommandData&& command_data, bool wait_for_idle, bool allow_on_cpu);
/// Returns true if this is called by the GPU thread
bool IsGpuThread() const {
return std::this_thread::get_id() == thread_id;
}
private:
SynchState state;
std::thread thread;
std::thread::id thread_id;
VideoCore::RendererBase& renderer;
Tegra::DmaPusher& dma_pusher;
};
} // namespace VideoCommon::GPUThread