Compare commits

...

12 Commits

Author SHA1 Message Date
ab2af23e47 Android #172 2023-12-26 00:56:59 +00:00
52d3d87d09 Merge PR 12467 2023-12-26 00:56:59 +00:00
30f76ed9c2 Merge PR 12466 2023-12-26 00:56:59 +00:00
c85f87ffa4 Merge PR 12449 2023-12-26 00:56:59 +00:00
7778f1906d Merge PR 12448 2023-12-26 00:56:59 +00:00
05e3db3ac9 Merge pull request #12394 from liamwhite/per-process-memory
general: properly support multiple memory instances
2023-12-24 16:23:14 +01:00
c57ae803a6 kernel: fix resource limit imbalance 2023-12-22 21:52:49 -05:00
db7b2bc8f1 kernel: restrict nce to applications 2023-12-22 21:52:49 -05:00
31bf57a310 general: properly support multiple memory instances 2023-12-22 21:52:49 -05:00
cae675343c k_server_session: remove scratch buffer usage in favor of direct copy 2023-12-22 21:52:49 -05:00
35501ba41c k_server_session: process for guest servers 2023-12-22 21:52:49 -05:00
419055e484 kernel: instantiate memory separately for each guest process 2023-12-22 21:52:49 -05:00
62 changed files with 2276 additions and 710 deletions

View File

@ -1,3 +1,15 @@
| Pull Request | Commit | Title | Author | Merged? |
|----|----|----|----|----|
| [12448](https://github.com/yuzu-emu/yuzu//pull/12448) | [`b1d4804c0`](https://github.com/yuzu-emu/yuzu//pull/12448/files) | renderer_vulkan: demote format assert to error log | [liamwhite](https://github.com/liamwhite/) | Yes |
| [12449](https://github.com/yuzu-emu/yuzu//pull/12449) | [`6a1ddc502`](https://github.com/yuzu-emu/yuzu//pull/12449/files) | renderer_vulkan: skip SetObjectNameEXT on unsupported driver | [liamwhite](https://github.com/liamwhite/) | Yes |
| [12466](https://github.com/yuzu-emu/yuzu//pull/12466) | [`5f3720138`](https://github.com/yuzu-emu/yuzu//pull/12466/files) | core: track separate heap allocation for linux | [liamwhite](https://github.com/liamwhite/) | Yes |
| [12467](https://github.com/yuzu-emu/yuzu//pull/12467) | [`cfc6c5f8f`](https://github.com/yuzu-emu/yuzu//pull/12467/files) | Revert " shader_recompiler: use minimal clip distance array " | [liamwhite](https://github.com/liamwhite/) | Yes |
End of merge log. You can find the original README.md below the break.
-----
<!-- <!--
SPDX-FileCopyrightText: 2018 yuzu Emulator Project SPDX-FileCopyrightText: 2018 yuzu Emulator Project
SPDX-License-Identifier: GPL-2.0-or-later SPDX-License-Identifier: GPL-2.0-or-later

View File

@ -64,6 +64,8 @@ add_library(common STATIC
fs/path_util.cpp fs/path_util.cpp
fs/path_util.h fs/path_util.h
hash.h hash.h
heap_tracker.cpp
heap_tracker.h
hex_util.cpp hex_util.cpp
hex_util.h hex_util.h
host_memory.cpp host_memory.cpp

385
src/common/heap_tracker.cpp Normal file
View File

@ -0,0 +1,385 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "common/assert.h"
#include "common/heap_tracker.h"
namespace Common {
namespace {
constexpr size_t MaxResidentMapCount = 0x8000;
} // namespace
HeapTracker::HeapTracker(Common::HostMemory& buffer) : m_buffer(buffer) {}
HeapTracker::~HeapTracker() = default;
void HeapTracker::Map(size_t virtual_offset, size_t host_offset, size_t length,
MemoryPermission perm, bool is_separate_heap) {
// When mapping other memory, map pages immediately.
if (!is_separate_heap) {
m_buffer.Map(virtual_offset, host_offset, length, perm, false);
return;
}
{
// We are mapping part of a separate heap.
std::scoped_lock lk{m_lock};
auto* map = new SeparateHeapMap{
.vaddr = virtual_offset,
.paddr = host_offset,
.size = length,
.map_id = m_next_map_id++,
.tick = m_tick++,
.perm = perm,
.is_resident = false,
};
// Insert into mappings.
m_mappings.insert(*map);
}
// Finally, map.
this->DeferredMapSeparateHeap(virtual_offset);
}
void HeapTracker::Unmap(size_t virtual_offset, size_t size, bool is_separate_heap) {
// If this is a separate heap...
if (is_separate_heap) {
std::scoped_lock lk{m_rebuild_lock, m_lock};
const SeparateHeapMap key{
.vaddr = virtual_offset,
.size = size,
};
// Split at the boundaries of the region we are removing.
this->SplitHeapMapLocked(virtual_offset);
this->SplitHeapMapLocked(virtual_offset + size);
// Erase all mappings in range.
auto it = m_mappings.find(key);
while (it != m_mappings.end() && it->vaddr < virtual_offset + size) {
// Get pointer to item.
SeparateHeapMap* const item = std::addressof(*it);
if (item->is_resident) {
// Unlink from resident tree.
m_resident_mappings.erase(m_resident_mappings.iterator_to(*item));
// Decrease reference count.
const auto count_it = m_resident_map_counts.find(item->map_id);
this->RemoveReferenceLocked(count_it, 1);
}
// Unlink from mapping tree and advance.
it = m_mappings.erase(it);
// Free the item.
delete item;
}
}
// Unmap pages.
m_buffer.Unmap(virtual_offset, size, false);
}
void HeapTracker::Protect(size_t virtual_offset, size_t size, MemoryPermission perm) {
// Ensure no rebuild occurs while reprotecting.
std::shared_lock lk{m_rebuild_lock};
// Split at the boundaries of the region we are reprotecting.
this->SplitHeapMap(virtual_offset, size);
// Declare tracking variables.
VAddr cur = virtual_offset;
VAddr end = virtual_offset + size;
while (cur < end) {
VAddr next = cur;
bool should_protect = false;
{
std::scoped_lock lk2{m_lock};
const SeparateHeapMap key{
.vaddr = next,
};
// Try to get the next mapping corresponding to this address.
const auto it = m_mappings.nfind_key(key);
if (it == m_mappings.end()) {
// There are no separate heap mappings remaining.
next = end;
should_protect = true;
} else if (it->vaddr == cur) {
// We are in range.
// Update permission bits.
it->perm = perm;
// Determine next address and whether we should protect.
next = cur + it->size;
should_protect = it->is_resident;
} else /* if (it->vaddr > cur) */ {
// We weren't in range, but there is a block coming up that will be.
next = it->vaddr;
should_protect = true;
}
}
// Clamp to end.
next = std::min(next, end);
// Reprotect, if we need to.
if (should_protect) {
m_buffer.Protect(cur, next - cur, perm);
}
// Advance.
cur = next;
}
}
bool HeapTracker::DeferredMapSeparateHeap(u8* fault_address) {
if (m_buffer.IsInVirtualRange(fault_address)) {
return this->DeferredMapSeparateHeap(fault_address - m_buffer.VirtualBasePointer());
}
return false;
}
bool HeapTracker::DeferredMapSeparateHeap(size_t virtual_offset) {
std::scoped_lock lk{m_lock};
while (this->IsEvictRequiredLocked()) {
// Unlock before we rebuild to ensure proper lock ordering.
m_lock.unlock();
// Evict four maps.
for (size_t i = 0; i < 4; /* ... */) {
i += this->EvictSingleSeparateHeapMap();
}
// Lock again.
m_lock.lock();
}
// Check to ensure this was a non-resident separate heap mapping.
const auto it = this->GetNearestHeapMapLocked(virtual_offset);
if (it == m_mappings.end()) {
// Not in any separate heap.
return false;
}
if (it->is_resident) {
// Already mapped and shouldn't be considered again.
return false;
}
// Map the area.
m_buffer.Map(it->vaddr, it->paddr, it->size, it->perm, false);
// This map is now resident.
this->AddReferenceLocked(it->map_id, 1);
it->is_resident = true;
it->tick = m_tick++;
// Insert into resident maps.
m_resident_mappings.insert(*it);
// We succeeded.
return true;
}
bool HeapTracker::EvictSingleSeparateHeapMap() {
std::scoped_lock lk{m_rebuild_lock, m_lock};
ASSERT(!m_resident_mappings.empty());
// Select the item with the lowest tick to evict.
auto* const item = std::addressof(*m_resident_mappings.begin());
auto it = m_mappings.iterator_to(*item);
// Track the map ID.
const size_t map_id = it->map_id;
// Walk backwards until we find the first entry.
while (it != m_mappings.begin()) {
// If the previous element does not have the same map ID, stop.
const auto prev = std::prev(it);
if (prev->map_id != map_id) {
break;
}
// Continue.
it = prev;
}
// Track the begin and end address.
const VAddr begin_vaddr = it->vaddr;
VAddr end_vaddr = begin_vaddr;
// Get the count iterator.
const auto count_it = m_resident_map_counts.find(map_id);
// Declare whether we have erased an underlying mapping.
bool was_erased = false;
// Unmark and merge everything in range.
while (it != m_mappings.end() && it->map_id == map_id) {
if (it->is_resident) {
// Remove from resident tree.
m_resident_mappings.erase(m_resident_mappings.iterator_to(*it));
it->is_resident = false;
// Remove reference count.
was_erased |= this->RemoveReferenceLocked(count_it, 1);
}
// Update the end address.
end_vaddr = it->vaddr + it->size;
// Advance.
it = this->MergeHeapMapForEvictLocked(it);
}
// Finally, unmap.
ASSERT(end_vaddr >= begin_vaddr);
m_buffer.Unmap(begin_vaddr, end_vaddr - begin_vaddr, false);
// Return whether we actually removed a mapping.
// This will be true if there were no holes, which is likely.
return was_erased;
}
void HeapTracker::SplitHeapMap(VAddr offset, size_t size) {
std::scoped_lock lk{m_lock};
this->SplitHeapMapLocked(offset);
this->SplitHeapMapLocked(offset + size);
}
void HeapTracker::SplitHeapMapLocked(VAddr offset) {
const auto it = this->GetNearestHeapMapLocked(offset);
if (it == m_mappings.end() || it->vaddr == offset) {
// Not contained or no split required.
return;
}
// Get the underlying item as the left.
auto* const left = std::addressof(*it);
// Cache the original size values.
const size_t size = left->size;
// Adjust the left map.
const size_t left_size = offset - left->vaddr;
left->size = left_size;
// Create the new right map.
auto* const right = new SeparateHeapMap{
.vaddr = left->vaddr + left_size,
.paddr = left->paddr + left_size,
.size = size - left_size,
.map_id = left->map_id,
.tick = left->tick,
.perm = left->perm,
.is_resident = left->is_resident,
};
// Insert the new right map.
m_mappings.insert(*right);
// If the original map was not resident, we are done.
if (!left->is_resident) {
return;
}
// Update reference count.
this->AddReferenceLocked(left->map_id, 1);
// Insert right into resident map.
m_resident_mappings.insert(*right);
}
HeapTracker::AddrTree::iterator HeapTracker::MergeHeapMapForEvictLocked(AddrTree::iterator it) {
if (it == m_mappings.end()) {
// Not contained.
return it;
}
if (it == m_mappings.begin()) {
// Nothing to merge with.
return std::next(it);
}
// Get the left and right items.
auto* const right = std::addressof(*it);
auto* const left = std::addressof(*std::prev(it));
if (left->vaddr + left->size != right->vaddr) {
// Virtual range not contiguous, cannot merge.
return std::next(it);
}
if (left->paddr + left->size != right->paddr) {
// Physical range not contiguous, cannot merge.
return std::next(it);
}
if (left->perm != right->perm) {
// Permissions mismatch, cannot merge.
return std::next(it);
}
if (left->map_id != right->map_id) {
// Map ID mismatch, cannot merge.
return std::next(it);
}
// Merge size to the left.
left->size += right->size;
// Erase the right element.
const auto next_it = m_mappings.erase(it);
// Free the right element.
delete right;
// Return the iterator to the next position.
return next_it;
}
HeapTracker::AddrTree::iterator HeapTracker::GetNearestHeapMapLocked(VAddr offset) {
const SeparateHeapMap key{
.vaddr = offset,
};
return m_mappings.find(key);
}
void HeapTracker::AddReferenceLocked(size_t map_id, size_t inc) {
m_resident_map_counts[map_id]++;
}
bool HeapTracker::RemoveReferenceLocked(MapCountTree::iterator it, size_t dec) {
ASSERT(it != m_resident_map_counts.end());
const auto new_value = it->second -= dec;
ASSERT(new_value >= 0);
if (new_value <= 0) {
m_resident_map_counts.erase(it);
return true;
}
return false;
}
bool HeapTracker::IsEvictRequiredLocked() {
return m_resident_map_counts.size() > MaxResidentMapCount;
}
} // namespace Common

103
src/common/heap_tracker.h Normal file
View File

@ -0,0 +1,103 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <map>
#include <mutex>
#include <shared_mutex>
#include "common/host_memory.h"
#include "common/intrusive_red_black_tree.h"
namespace Common {
struct SeparateHeapMap {
Common::IntrusiveRedBlackTreeNode addr_node{};
Common::IntrusiveRedBlackTreeNode tick_node{};
VAddr vaddr{};
PAddr paddr{};
size_t size{};
size_t map_id{};
size_t tick{};
MemoryPermission perm{};
bool is_resident{};
};
struct SeparateHeapMapAddrComparator {
static constexpr int Compare(const SeparateHeapMap& lhs, const SeparateHeapMap& rhs) {
if (lhs.vaddr < rhs.vaddr) {
return -1;
} else if (lhs.vaddr <= (rhs.vaddr + rhs.size - 1)) {
return 0;
} else {
return 1;
}
}
};
struct SeparateHeapMapTickComparator {
static constexpr int Compare(const SeparateHeapMap& lhs, const SeparateHeapMap& rhs) {
if (lhs.tick < rhs.tick) {
return -1;
} else if (lhs.tick > rhs.tick) {
return 1;
} else {
return SeparateHeapMapAddrComparator::Compare(lhs, rhs);
}
}
};
class HeapTracker {
public:
explicit HeapTracker(Common::HostMemory& buffer);
~HeapTracker();
void Map(size_t virtual_offset, size_t host_offset, size_t length, MemoryPermission perm,
bool is_separate_heap);
void Unmap(size_t virtual_offset, size_t size, bool is_separate_heap);
void Protect(size_t virtual_offset, size_t length, MemoryPermission perm);
u8* VirtualBasePointer() {
return m_buffer.VirtualBasePointer();
}
bool DeferredMapSeparateHeap(u8* fault_address);
bool DeferredMapSeparateHeap(size_t virtual_offset);
private:
Common::HostMemory& m_buffer;
std::shared_mutex m_rebuild_lock{};
std::mutex m_lock{};
size_t m_next_map_id{};
size_t m_tick{};
private:
using AddrTreeTraits =
Common::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<&SeparateHeapMap::addr_node>;
using AddrTree = AddrTreeTraits::TreeType<SeparateHeapMapAddrComparator>;
using TickTreeTraits =
Common::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<&SeparateHeapMap::tick_node>;
using TickTree = TickTreeTraits::TreeType<SeparateHeapMapTickComparator>;
using MapCountTree = std::map<size_t, s64>;
MapCountTree m_resident_map_counts{};
AddrTree m_mappings{};
TickTree m_resident_mappings{};
private:
void SplitHeapMap(VAddr offset, size_t size);
void SplitHeapMapLocked(VAddr offset);
AddrTree::iterator MergeHeapMapForEvictLocked(AddrTree::iterator cur);
AddrTree::iterator GetNearestHeapMapLocked(VAddr offset);
bool EvictSingleSeparateHeapMap();
void AddReferenceLocked(size_t map_id, size_t inc);
bool RemoveReferenceLocked(MapCountTree::iterator map_id, size_t dec);
bool IsEvictRequiredLocked();
};
} // namespace Common

View File

@ -679,7 +679,7 @@ HostMemory::HostMemory(HostMemory&&) noexcept = default;
HostMemory& HostMemory::operator=(HostMemory&&) noexcept = default; HostMemory& HostMemory::operator=(HostMemory&&) noexcept = default;
void HostMemory::Map(size_t virtual_offset, size_t host_offset, size_t length, void HostMemory::Map(size_t virtual_offset, size_t host_offset, size_t length,
MemoryPermission perms) { MemoryPermission perms, bool separate_heap) {
ASSERT(virtual_offset % PageAlignment == 0); ASSERT(virtual_offset % PageAlignment == 0);
ASSERT(host_offset % PageAlignment == 0); ASSERT(host_offset % PageAlignment == 0);
ASSERT(length % PageAlignment == 0); ASSERT(length % PageAlignment == 0);
@ -691,7 +691,7 @@ void HostMemory::Map(size_t virtual_offset, size_t host_offset, size_t length,
impl->Map(virtual_offset + virtual_base_offset, host_offset, length, perms); impl->Map(virtual_offset + virtual_base_offset, host_offset, length, perms);
} }
void HostMemory::Unmap(size_t virtual_offset, size_t length) { void HostMemory::Unmap(size_t virtual_offset, size_t length, bool separate_heap) {
ASSERT(virtual_offset % PageAlignment == 0); ASSERT(virtual_offset % PageAlignment == 0);
ASSERT(length % PageAlignment == 0); ASSERT(length % PageAlignment == 0);
ASSERT(virtual_offset + length <= virtual_size); ASSERT(virtual_offset + length <= virtual_size);
@ -701,14 +701,16 @@ void HostMemory::Unmap(size_t virtual_offset, size_t length) {
impl->Unmap(virtual_offset + virtual_base_offset, length); impl->Unmap(virtual_offset + virtual_base_offset, length);
} }
void HostMemory::Protect(size_t virtual_offset, size_t length, bool read, bool write, void HostMemory::Protect(size_t virtual_offset, size_t length, MemoryPermission perm) {
bool execute) {
ASSERT(virtual_offset % PageAlignment == 0); ASSERT(virtual_offset % PageAlignment == 0);
ASSERT(length % PageAlignment == 0); ASSERT(length % PageAlignment == 0);
ASSERT(virtual_offset + length <= virtual_size); ASSERT(virtual_offset + length <= virtual_size);
if (length == 0 || !virtual_base || !impl) { if (length == 0 || !virtual_base || !impl) {
return; return;
} }
const bool read = True(perm & MemoryPermission::Read);
const bool write = True(perm & MemoryPermission::Write);
const bool execute = True(perm & MemoryPermission::Execute);
impl->Protect(virtual_offset + virtual_base_offset, length, read, write, execute); impl->Protect(virtual_offset + virtual_base_offset, length, read, write, execute);
} }

View File

@ -40,11 +40,12 @@ public:
HostMemory(HostMemory&& other) noexcept; HostMemory(HostMemory&& other) noexcept;
HostMemory& operator=(HostMemory&& other) noexcept; HostMemory& operator=(HostMemory&& other) noexcept;
void Map(size_t virtual_offset, size_t host_offset, size_t length, MemoryPermission perms); void Map(size_t virtual_offset, size_t host_offset, size_t length, MemoryPermission perms,
bool separate_heap);
void Unmap(size_t virtual_offset, size_t length); void Unmap(size_t virtual_offset, size_t length, bool separate_heap);
void Protect(size_t virtual_offset, size_t length, bool read, bool write, bool execute = false); void Protect(size_t virtual_offset, size_t length, MemoryPermission perms);
void EnableDirectMappedAddress(); void EnableDirectMappedAddress();
@ -64,6 +65,10 @@ public:
return virtual_base; return virtual_base;
} }
bool IsInVirtualRange(void* address) const noexcept {
return address >= virtual_base && address < virtual_base + virtual_size;
}
private: private:
size_t backing_size{}; size_t backing_size{};
size_t virtual_size{}; size_t virtual_size{};

View File

@ -978,6 +978,7 @@ endif()
if (ARCHITECTURE_x86_64 OR ARCHITECTURE_arm64) if (ARCHITECTURE_x86_64 OR ARCHITECTURE_arm64)
target_sources(core PRIVATE target_sources(core PRIVATE
arm/dynarmic/arm_dynarmic.cpp
arm/dynarmic/arm_dynarmic.h arm/dynarmic/arm_dynarmic.h
arm/dynarmic/arm_dynarmic_64.cpp arm/dynarmic/arm_dynarmic_64.cpp
arm/dynarmic/arm_dynarmic_64.h arm/dynarmic/arm_dynarmic_64.h

View File

@ -9,7 +9,7 @@
namespace Core { namespace Core {
void ArmInterface::LogBacktrace(const Kernel::KProcess* process) const { void ArmInterface::LogBacktrace(Kernel::KProcess* process) const {
Kernel::Svc::ThreadContext ctx; Kernel::Svc::ThreadContext ctx;
this->GetContext(ctx); this->GetContext(ctx);

View File

@ -95,7 +95,7 @@ public:
virtual void SignalInterrupt(Kernel::KThread* thread) = 0; virtual void SignalInterrupt(Kernel::KThread* thread) = 0;
// Stack trace generation. // Stack trace generation.
void LogBacktrace(const Kernel::KProcess* process) const; void LogBacktrace(Kernel::KProcess* process) const;
// Debug functionality. // Debug functionality.
virtual const Kernel::DebugWatchpoint* HaltedWatchpoint() const = 0; virtual const Kernel::DebugWatchpoint* HaltedWatchpoint() const = 0;

View File

@ -79,7 +79,7 @@ constexpr std::array<u64, 2> SegmentBases{
0x7100000000ULL, 0x7100000000ULL,
}; };
void SymbolicateBacktrace(const Kernel::KProcess* process, std::vector<BacktraceEntry>& out) { void SymbolicateBacktrace(Kernel::KProcess* process, std::vector<BacktraceEntry>& out) {
auto modules = FindModules(process); auto modules = FindModules(process);
const bool is_64 = process->Is64Bit(); const bool is_64 = process->Is64Bit();
@ -118,7 +118,7 @@ void SymbolicateBacktrace(const Kernel::KProcess* process, std::vector<Backtrace
} }
} }
std::vector<BacktraceEntry> GetAArch64Backtrace(const Kernel::KProcess* process, std::vector<BacktraceEntry> GetAArch64Backtrace(Kernel::KProcess* process,
const Kernel::Svc::ThreadContext& ctx) { const Kernel::Svc::ThreadContext& ctx) {
std::vector<BacktraceEntry> out; std::vector<BacktraceEntry> out;
auto& memory = process->GetMemory(); auto& memory = process->GetMemory();
@ -144,7 +144,7 @@ std::vector<BacktraceEntry> GetAArch64Backtrace(const Kernel::KProcess* process,
return out; return out;
} }
std::vector<BacktraceEntry> GetAArch32Backtrace(const Kernel::KProcess* process, std::vector<BacktraceEntry> GetAArch32Backtrace(Kernel::KProcess* process,
const Kernel::Svc::ThreadContext& ctx) { const Kernel::Svc::ThreadContext& ctx) {
std::vector<BacktraceEntry> out; std::vector<BacktraceEntry> out;
auto& memory = process->GetMemory(); auto& memory = process->GetMemory();
@ -173,7 +173,7 @@ std::vector<BacktraceEntry> GetAArch32Backtrace(const Kernel::KProcess* process,
} // namespace } // namespace
std::optional<std::string> GetThreadName(const Kernel::KThread* thread) { std::optional<std::string> GetThreadName(const Kernel::KThread* thread) {
const auto* process = thread->GetOwnerProcess(); auto* process = thread->GetOwnerProcess();
if (process->Is64Bit()) { if (process->Is64Bit()) {
return GetNameFromThreadType64(process->GetMemory(), *thread); return GetNameFromThreadType64(process->GetMemory(), *thread);
} else { } else {
@ -248,7 +248,7 @@ Kernel::KProcessAddress GetModuleEnd(const Kernel::KProcess* process,
return cur_addr - 1; return cur_addr - 1;
} }
Loader::AppLoader::Modules FindModules(const Kernel::KProcess* process) { Loader::AppLoader::Modules FindModules(Kernel::KProcess* process) {
Loader::AppLoader::Modules modules; Loader::AppLoader::Modules modules;
auto& page_table = process->GetPageTable(); auto& page_table = process->GetPageTable();
@ -312,7 +312,7 @@ Loader::AppLoader::Modules FindModules(const Kernel::KProcess* process) {
return modules; return modules;
} }
Kernel::KProcessAddress FindMainModuleEntrypoint(const Kernel::KProcess* process) { Kernel::KProcessAddress FindMainModuleEntrypoint(Kernel::KProcess* process) {
// Do we have any loaded executable sections? // Do we have any loaded executable sections?
auto modules = FindModules(process); auto modules = FindModules(process);
@ -337,7 +337,7 @@ void InvalidateInstructionCacheRange(const Kernel::KProcess* process, u64 addres
} }
} }
std::vector<BacktraceEntry> GetBacktraceFromContext(const Kernel::KProcess* process, std::vector<BacktraceEntry> GetBacktraceFromContext(Kernel::KProcess* process,
const Kernel::Svc::ThreadContext& ctx) { const Kernel::Svc::ThreadContext& ctx) {
if (process->Is64Bit()) { if (process->Is64Bit()) {
return GetAArch64Backtrace(process, ctx); return GetAArch64Backtrace(process, ctx);

View File

@ -14,9 +14,9 @@ std::optional<std::string> GetThreadName(const Kernel::KThread* thread);
std::string_view GetThreadWaitReason(const Kernel::KThread* thread); std::string_view GetThreadWaitReason(const Kernel::KThread* thread);
std::string GetThreadState(const Kernel::KThread* thread); std::string GetThreadState(const Kernel::KThread* thread);
Loader::AppLoader::Modules FindModules(const Kernel::KProcess* process); Loader::AppLoader::Modules FindModules(Kernel::KProcess* process);
Kernel::KProcessAddress GetModuleEnd(const Kernel::KProcess* process, Kernel::KProcessAddress base); Kernel::KProcessAddress GetModuleEnd(const Kernel::KProcess* process, Kernel::KProcessAddress base);
Kernel::KProcessAddress FindMainModuleEntrypoint(const Kernel::KProcess* process); Kernel::KProcessAddress FindMainModuleEntrypoint(Kernel::KProcess* process);
void InvalidateInstructionCacheRange(const Kernel::KProcess* process, u64 address, u64 size); void InvalidateInstructionCacheRange(const Kernel::KProcess* process, u64 address, u64 size);
@ -28,7 +28,7 @@ struct BacktraceEntry {
std::string name; std::string name;
}; };
std::vector<BacktraceEntry> GetBacktraceFromContext(const Kernel::KProcess* process, std::vector<BacktraceEntry> GetBacktraceFromContext(Kernel::KProcess* process,
const Kernel::Svc::ThreadContext& ctx); const Kernel::Svc::ThreadContext& ctx);
std::vector<BacktraceEntry> GetBacktrace(const Kernel::KThread* thread); std::vector<BacktraceEntry> GetBacktrace(const Kernel::KThread* thread);

View File

@ -0,0 +1,49 @@
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#ifdef __linux__
#include "common/signal_chain.h"
#include "core/arm/dynarmic/arm_dynarmic.h"
#include "core/hle/kernel/k_process.h"
#include "core/memory.h"
namespace Core {
namespace {
thread_local Core::Memory::Memory* g_current_memory{};
std::once_flag g_registered{};
struct sigaction g_old_segv {};
void HandleSigSegv(int sig, siginfo_t* info, void* ctx) {
if (g_current_memory && g_current_memory->InvalidateSeparateHeap(info->si_addr)) {
return;
}
return g_old_segv.sa_sigaction(sig, info, ctx);
}
} // namespace
ScopedJitExecution::ScopedJitExecution(Kernel::KProcess* process) {
g_current_memory = std::addressof(process->GetMemory());
}
ScopedJitExecution::~ScopedJitExecution() {
g_current_memory = nullptr;
}
void ScopedJitExecution::RegisterHandler() {
std::call_once(g_registered, [] {
struct sigaction sa {};
sa.sa_sigaction = &HandleSigSegv;
sa.sa_flags = SA_SIGINFO | SA_ONSTACK;
Common::SigAction(SIGSEGV, std::addressof(sa), std::addressof(g_old_segv));
});
}
} // namespace Core
#endif

View File

@ -26,4 +26,24 @@ constexpr HaltReason TranslateHaltReason(Dynarmic::HaltReason hr) {
return static_cast<HaltReason>(hr); return static_cast<HaltReason>(hr);
} }
#ifdef __linux__
class ScopedJitExecution {
public:
explicit ScopedJitExecution(Kernel::KProcess* process);
~ScopedJitExecution();
static void RegisterHandler();
};
#else
class ScopedJitExecution {
public:
explicit ScopedJitExecution(Kernel::KProcess* process) {}
~ScopedJitExecution() {}
static void RegisterHandler() {}
};
#endif
} // namespace Core } // namespace Core

View File

@ -15,7 +15,7 @@ using namespace Common::Literals;
class DynarmicCallbacks32 : public Dynarmic::A32::UserCallbacks { class DynarmicCallbacks32 : public Dynarmic::A32::UserCallbacks {
public: public:
explicit DynarmicCallbacks32(ArmDynarmic32& parent, const Kernel::KProcess* process) explicit DynarmicCallbacks32(ArmDynarmic32& parent, Kernel::KProcess* process)
: m_parent{parent}, m_memory(process->GetMemory()), : m_parent{parent}, m_memory(process->GetMemory()),
m_process(process), m_debugger_enabled{parent.m_system.DebuggerEnabled()}, m_process(process), m_debugger_enabled{parent.m_system.DebuggerEnabled()},
m_check_memory_access{m_debugger_enabled || m_check_memory_access{m_debugger_enabled ||
@ -169,7 +169,7 @@ public:
ArmDynarmic32& m_parent; ArmDynarmic32& m_parent;
Core::Memory::Memory& m_memory; Core::Memory::Memory& m_memory;
const Kernel::KProcess* m_process{}; Kernel::KProcess* m_process{};
const bool m_debugger_enabled{}; const bool m_debugger_enabled{};
const bool m_check_memory_access{}; const bool m_check_memory_access{};
static constexpr u64 MinimumRunCycles = 10000U; static constexpr u64 MinimumRunCycles = 10000U;
@ -331,11 +331,15 @@ bool ArmDynarmic32::IsInThumbMode() const {
} }
HaltReason ArmDynarmic32::RunThread(Kernel::KThread* thread) { HaltReason ArmDynarmic32::RunThread(Kernel::KThread* thread) {
ScopedJitExecution sj(thread->GetOwnerProcess());
m_jit->ClearExclusiveState(); m_jit->ClearExclusiveState();
return TranslateHaltReason(m_jit->Run()); return TranslateHaltReason(m_jit->Run());
} }
HaltReason ArmDynarmic32::StepThread(Kernel::KThread* thread) { HaltReason ArmDynarmic32::StepThread(Kernel::KThread* thread) {
ScopedJitExecution sj(thread->GetOwnerProcess());
m_jit->ClearExclusiveState(); m_jit->ClearExclusiveState();
return TranslateHaltReason(m_jit->Step()); return TranslateHaltReason(m_jit->Step());
} }
@ -370,13 +374,14 @@ void ArmDynarmic32::RewindBreakpointInstruction() {
this->SetContext(m_breakpoint_context); this->SetContext(m_breakpoint_context);
} }
ArmDynarmic32::ArmDynarmic32(System& system, bool uses_wall_clock, const Kernel::KProcess* process, ArmDynarmic32::ArmDynarmic32(System& system, bool uses_wall_clock, Kernel::KProcess* process,
DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index) DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index)
: ArmInterface{uses_wall_clock}, m_system{system}, m_exclusive_monitor{exclusive_monitor}, : ArmInterface{uses_wall_clock}, m_system{system}, m_exclusive_monitor{exclusive_monitor},
m_cb(std::make_unique<DynarmicCallbacks32>(*this, process)), m_cb(std::make_unique<DynarmicCallbacks32>(*this, process)),
m_cp15(std::make_shared<DynarmicCP15>(*this)), m_core_index{core_index} { m_cp15(std::make_shared<DynarmicCP15>(*this)), m_core_index{core_index} {
auto& page_table_impl = process->GetPageTable().GetBasePageTable().GetImpl(); auto& page_table_impl = process->GetPageTable().GetBasePageTable().GetImpl();
m_jit = MakeJit(&page_table_impl); m_jit = MakeJit(&page_table_impl);
ScopedJitExecution::RegisterHandler();
} }
ArmDynarmic32::~ArmDynarmic32() = default; ArmDynarmic32::~ArmDynarmic32() = default;

View File

@ -20,7 +20,7 @@ class System;
class ArmDynarmic32 final : public ArmInterface { class ArmDynarmic32 final : public ArmInterface {
public: public:
ArmDynarmic32(System& system, bool uses_wall_clock, const Kernel::KProcess* process, ArmDynarmic32(System& system, bool uses_wall_clock, Kernel::KProcess* process,
DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index); DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index);
~ArmDynarmic32() override; ~ArmDynarmic32() override;

View File

@ -15,7 +15,7 @@ using namespace Common::Literals;
class DynarmicCallbacks64 : public Dynarmic::A64::UserCallbacks { class DynarmicCallbacks64 : public Dynarmic::A64::UserCallbacks {
public: public:
explicit DynarmicCallbacks64(ArmDynarmic64& parent, const Kernel::KProcess* process) explicit DynarmicCallbacks64(ArmDynarmic64& parent, Kernel::KProcess* process)
: m_parent{parent}, m_memory(process->GetMemory()), : m_parent{parent}, m_memory(process->GetMemory()),
m_process(process), m_debugger_enabled{parent.m_system.DebuggerEnabled()}, m_process(process), m_debugger_enabled{parent.m_system.DebuggerEnabled()},
m_check_memory_access{m_debugger_enabled || m_check_memory_access{m_debugger_enabled ||
@ -216,7 +216,7 @@ public:
Core::Memory::Memory& m_memory; Core::Memory::Memory& m_memory;
u64 m_tpidrro_el0{}; u64 m_tpidrro_el0{};
u64 m_tpidr_el0{}; u64 m_tpidr_el0{};
const Kernel::KProcess* m_process{}; Kernel::KProcess* m_process{};
const bool m_debugger_enabled{}; const bool m_debugger_enabled{};
const bool m_check_memory_access{}; const bool m_check_memory_access{};
static constexpr u64 MinimumRunCycles = 10000U; static constexpr u64 MinimumRunCycles = 10000U;
@ -362,11 +362,15 @@ std::shared_ptr<Dynarmic::A64::Jit> ArmDynarmic64::MakeJit(Common::PageTable* pa
} }
HaltReason ArmDynarmic64::RunThread(Kernel::KThread* thread) { HaltReason ArmDynarmic64::RunThread(Kernel::KThread* thread) {
ScopedJitExecution sj(thread->GetOwnerProcess());
m_jit->ClearExclusiveState(); m_jit->ClearExclusiveState();
return TranslateHaltReason(m_jit->Run()); return TranslateHaltReason(m_jit->Run());
} }
HaltReason ArmDynarmic64::StepThread(Kernel::KThread* thread) { HaltReason ArmDynarmic64::StepThread(Kernel::KThread* thread) {
ScopedJitExecution sj(thread->GetOwnerProcess());
m_jit->ClearExclusiveState(); m_jit->ClearExclusiveState();
return TranslateHaltReason(m_jit->Step()); return TranslateHaltReason(m_jit->Step());
} }
@ -399,13 +403,14 @@ void ArmDynarmic64::RewindBreakpointInstruction() {
this->SetContext(m_breakpoint_context); this->SetContext(m_breakpoint_context);
} }
ArmDynarmic64::ArmDynarmic64(System& system, bool uses_wall_clock, const Kernel::KProcess* process, ArmDynarmic64::ArmDynarmic64(System& system, bool uses_wall_clock, Kernel::KProcess* process,
DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index) DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index)
: ArmInterface{uses_wall_clock}, m_system{system}, m_exclusive_monitor{exclusive_monitor}, : ArmInterface{uses_wall_clock}, m_system{system}, m_exclusive_monitor{exclusive_monitor},
m_cb(std::make_unique<DynarmicCallbacks64>(*this, process)), m_core_index{core_index} { m_cb(std::make_unique<DynarmicCallbacks64>(*this, process)), m_core_index{core_index} {
auto& page_table = process->GetPageTable().GetBasePageTable(); auto& page_table = process->GetPageTable().GetBasePageTable();
auto& page_table_impl = page_table.GetImpl(); auto& page_table_impl = page_table.GetImpl();
m_jit = MakeJit(&page_table_impl, page_table.GetAddressSpaceWidth()); m_jit = MakeJit(&page_table_impl, page_table.GetAddressSpaceWidth());
ScopedJitExecution::RegisterHandler();
} }
ArmDynarmic64::~ArmDynarmic64() = default; ArmDynarmic64::~ArmDynarmic64() = default;

View File

@ -25,7 +25,7 @@ class System;
class ArmDynarmic64 final : public ArmInterface { class ArmDynarmic64 final : public ArmInterface {
public: public:
ArmDynarmic64(System& system, bool uses_wall_clock, const Kernel::KProcess* process, ArmDynarmic64(System& system, bool uses_wall_clock, Kernel::KProcess* process,
DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index); DynarmicExclusiveMonitor& exclusive_monitor, std::size_t core_index);
~ArmDynarmic64() override; ~ArmDynarmic64() override;

View File

@ -28,7 +28,6 @@
#include "core/file_sys/savedata_factory.h" #include "core/file_sys/savedata_factory.h"
#include "core/file_sys/vfs_concat.h" #include "core/file_sys/vfs_concat.h"
#include "core/file_sys/vfs_real.h" #include "core/file_sys/vfs_real.h"
#include "core/gpu_dirty_memory_manager.h"
#include "core/hid/hid_core.h" #include "core/hid/hid_core.h"
#include "core/hle/kernel/k_memory_manager.h" #include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_process.h" #include "core/hle/kernel/k_process.h"
@ -130,11 +129,8 @@ FileSys::VirtualFile GetGameFileFromPath(const FileSys::VirtualFilesystem& vfs,
struct System::Impl { struct System::Impl {
explicit Impl(System& system) explicit Impl(System& system)
: kernel{system}, fs_controller{system}, memory{system}, hid_core{}, room_network{}, : kernel{system}, fs_controller{system}, hid_core{}, room_network{}, cpu_manager{system},
cpu_manager{system}, reporter{system}, applet_manager{system}, profile_manager{}, reporter{system}, applet_manager{system}, profile_manager{}, time_manager{system} {}
time_manager{system}, gpu_dirty_memory_write_manager{} {
memory.SetGPUDirtyManagers(gpu_dirty_memory_write_manager);
}
void Initialize(System& system) { void Initialize(System& system) {
device_memory = std::make_unique<Core::DeviceMemory>(); device_memory = std::make_unique<Core::DeviceMemory>();
@ -241,17 +237,17 @@ struct System::Impl {
debugger = std::make_unique<Debugger>(system, port); debugger = std::make_unique<Debugger>(system, port);
} }
SystemResultStatus SetupForApplicationProcess(System& system, Frontend::EmuWindow& emu_window) { void InitializeKernel(System& system) {
LOG_DEBUG(Core, "initialized OK"); LOG_DEBUG(Core, "initialized OK");
// Setting changes may require a full system reinitialization (e.g., disabling multicore). // Setting changes may require a full system reinitialization (e.g., disabling multicore).
ReinitializeIfNecessary(system); ReinitializeIfNecessary(system);
memory.SetGPUDirtyManagers(gpu_dirty_memory_write_manager);
kernel.Initialize(); kernel.Initialize();
cpu_manager.Initialize(); cpu_manager.Initialize();
}
SystemResultStatus SetupForApplicationProcess(System& system, Frontend::EmuWindow& emu_window) {
/// Reset all glue registrations /// Reset all glue registrations
arp_manager.ResetAll(); arp_manager.ResetAll();
@ -300,17 +296,9 @@ struct System::Impl {
return SystemResultStatus::ErrorGetLoader; return SystemResultStatus::ErrorGetLoader;
} }
SystemResultStatus init_result{SetupForApplicationProcess(system, emu_window)}; InitializeKernel(system);
if (init_result != SystemResultStatus::Success) {
LOG_CRITICAL(Core, "Failed to initialize system (Error {})!",
static_cast<int>(init_result));
ShutdownMainProcess();
return init_result;
}
telemetry_session->AddInitialInfo(*app_loader, fs_controller, *content_provider); // Create the application process.
// Create the process.
auto main_process = Kernel::KProcess::Create(system.Kernel()); auto main_process = Kernel::KProcess::Create(system.Kernel());
Kernel::KProcess::Register(system.Kernel(), main_process); Kernel::KProcess::Register(system.Kernel(), main_process);
kernel.AppendNewProcess(main_process); kernel.AppendNewProcess(main_process);
@ -323,7 +311,18 @@ struct System::Impl {
return static_cast<SystemResultStatus>( return static_cast<SystemResultStatus>(
static_cast<u32>(SystemResultStatus::ErrorLoader) + static_cast<u32>(load_result)); static_cast<u32>(SystemResultStatus::ErrorLoader) + static_cast<u32>(load_result));
} }
// Set up the rest of the system.
SystemResultStatus init_result{SetupForApplicationProcess(system, emu_window)};
if (init_result != SystemResultStatus::Success) {
LOG_CRITICAL(Core, "Failed to initialize system (Error {})!",
static_cast<int>(init_result));
ShutdownMainProcess();
return init_result;
}
AddGlueRegistrationForProcess(*app_loader, *main_process); AddGlueRegistrationForProcess(*app_loader, *main_process);
telemetry_session->AddInitialInfo(*app_loader, fs_controller, *content_provider);
// Initialize cheat engine // Initialize cheat engine
if (cheat_engine) { if (cheat_engine) {
@ -426,7 +425,6 @@ struct System::Impl {
cpu_manager.Shutdown(); cpu_manager.Shutdown();
debugger.reset(); debugger.reset();
kernel.Shutdown(); kernel.Shutdown();
memory.Reset();
Network::RestartSocketOperations(); Network::RestartSocketOperations();
if (auto room_member = room_network.GetRoomMember().lock()) { if (auto room_member = room_network.GetRoomMember().lock()) {
@ -507,7 +505,6 @@ struct System::Impl {
std::unique_ptr<Tegra::Host1x::Host1x> host1x_core; std::unique_ptr<Tegra::Host1x::Host1x> host1x_core;
std::unique_ptr<Core::DeviceMemory> device_memory; std::unique_ptr<Core::DeviceMemory> device_memory;
std::unique_ptr<AudioCore::AudioCore> audio_core; std::unique_ptr<AudioCore::AudioCore> audio_core;
Core::Memory::Memory memory;
Core::HID::HIDCore hid_core; Core::HID::HIDCore hid_core;
Network::RoomNetwork room_network; Network::RoomNetwork room_network;
@ -567,9 +564,6 @@ struct System::Impl {
std::array<u64, Core::Hardware::NUM_CPU_CORES> dynarmic_ticks{}; std::array<u64, Core::Hardware::NUM_CPU_CORES> dynarmic_ticks{};
std::array<MicroProfileToken, Core::Hardware::NUM_CPU_CORES> microprofile_cpu{}; std::array<MicroProfileToken, Core::Hardware::NUM_CPU_CORES> microprofile_cpu{};
std::array<Core::GPUDirtyMemoryManager, Core::Hardware::NUM_CPU_CORES>
gpu_dirty_memory_write_manager{};
std::deque<std::vector<u8>> user_channel; std::deque<std::vector<u8>> user_channel;
}; };
@ -652,29 +646,12 @@ void System::PrepareReschedule(const u32 core_index) {
impl->kernel.PrepareReschedule(core_index); impl->kernel.PrepareReschedule(core_index);
} }
Core::GPUDirtyMemoryManager& System::CurrentGPUDirtyMemoryManager() {
const std::size_t core = impl->kernel.GetCurrentHostThreadID();
return impl->gpu_dirty_memory_write_manager[core < Core::Hardware::NUM_CPU_CORES
? core
: Core::Hardware::NUM_CPU_CORES - 1];
}
/// Provides a constant reference to the current gou dirty memory manager.
const Core::GPUDirtyMemoryManager& System::CurrentGPUDirtyMemoryManager() const {
const std::size_t core = impl->kernel.GetCurrentHostThreadID();
return impl->gpu_dirty_memory_write_manager[core < Core::Hardware::NUM_CPU_CORES
? core
: Core::Hardware::NUM_CPU_CORES - 1];
}
size_t System::GetCurrentHostThreadID() const { size_t System::GetCurrentHostThreadID() const {
return impl->kernel.GetCurrentHostThreadID(); return impl->kernel.GetCurrentHostThreadID();
} }
void System::GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback) { void System::GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback) {
for (auto& manager : impl->gpu_dirty_memory_write_manager) { return this->ApplicationProcess()->GatherGPUDirtyMemory(callback);
manager.Gather(callback);
}
} }
PerfStatsResults System::GetAndResetPerfStats() { PerfStatsResults System::GetAndResetPerfStats() {
@ -723,20 +700,12 @@ const Kernel::KProcess* System::ApplicationProcess() const {
return impl->kernel.ApplicationProcess(); return impl->kernel.ApplicationProcess();
} }
ExclusiveMonitor& System::Monitor() {
return impl->kernel.GetExclusiveMonitor();
}
const ExclusiveMonitor& System::Monitor() const {
return impl->kernel.GetExclusiveMonitor();
}
Memory::Memory& System::ApplicationMemory() { Memory::Memory& System::ApplicationMemory() {
return impl->memory; return impl->kernel.ApplicationProcess()->GetMemory();
} }
const Core::Memory::Memory& System::ApplicationMemory() const { const Core::Memory::Memory& System::ApplicationMemory() const {
return impl->memory; return impl->kernel.ApplicationProcess()->GetMemory();
} }
Tegra::GPU& System::GPU() { Tegra::GPU& System::GPU() {

View File

@ -116,7 +116,6 @@ class CpuManager;
class Debugger; class Debugger;
class DeviceMemory; class DeviceMemory;
class ExclusiveMonitor; class ExclusiveMonitor;
class GPUDirtyMemoryManager;
class PerfStats; class PerfStats;
class Reporter; class Reporter;
class SpeedLimiter; class SpeedLimiter;
@ -225,12 +224,6 @@ public:
/// Prepare the core emulation for a reschedule /// Prepare the core emulation for a reschedule
void PrepareReschedule(u32 core_index); void PrepareReschedule(u32 core_index);
/// Provides a reference to the gou dirty memory manager.
[[nodiscard]] Core::GPUDirtyMemoryManager& CurrentGPUDirtyMemoryManager();
/// Provides a constant reference to the current gou dirty memory manager.
[[nodiscard]] const Core::GPUDirtyMemoryManager& CurrentGPUDirtyMemoryManager() const;
void GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback); void GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback);
[[nodiscard]] size_t GetCurrentHostThreadID() const; [[nodiscard]] size_t GetCurrentHostThreadID() const;
@ -250,12 +243,6 @@ public:
/// Gets a const reference to the underlying CPU manager /// Gets a const reference to the underlying CPU manager
[[nodiscard]] const CpuManager& GetCpuManager() const; [[nodiscard]] const CpuManager& GetCpuManager() const;
/// Gets a reference to the exclusive monitor
[[nodiscard]] ExclusiveMonitor& Monitor();
/// Gets a constant reference to the exclusive monitor
[[nodiscard]] const ExclusiveMonitor& Monitor() const;
/// Gets a mutable reference to the system memory instance. /// Gets a mutable reference to the system memory instance.
[[nodiscard]] Core::Memory::Memory& ApplicationMemory(); [[nodiscard]] Core::Memory::Memory& ApplicationMemory();

View File

@ -166,6 +166,10 @@ u32 ProgramMetadata::GetSystemResourceSize() const {
return npdm_header.system_resource_size; return npdm_header.system_resource_size;
} }
PoolPartition ProgramMetadata::GetPoolPartition() const {
return acid_header.pool_partition;
}
const ProgramMetadata::KernelCapabilityDescriptors& ProgramMetadata::GetKernelCapabilities() const { const ProgramMetadata::KernelCapabilityDescriptors& ProgramMetadata::GetKernelCapabilities() const {
return aci_kernel_capabilities; return aci_kernel_capabilities;
} }
@ -201,7 +205,7 @@ void ProgramMetadata::Print() const {
// Begin ACID printing (potential perms, signed) // Begin ACID printing (potential perms, signed)
LOG_DEBUG(Service_FS, "Magic: {:.4}", acid_header.magic.data()); LOG_DEBUG(Service_FS, "Magic: {:.4}", acid_header.magic.data());
LOG_DEBUG(Service_FS, "Flags: 0x{:02X}", acid_header.flags); LOG_DEBUG(Service_FS, "Flags: 0x{:02X}", acid_header.flags);
LOG_DEBUG(Service_FS, " > Is Retail: {}", acid_header.is_retail ? "YES" : "NO"); LOG_DEBUG(Service_FS, " > Is Retail: {}", acid_header.production_flag ? "YES" : "NO");
LOG_DEBUG(Service_FS, "Title ID Min: 0x{:016X}", acid_header.title_id_min); LOG_DEBUG(Service_FS, "Title ID Min: 0x{:016X}", acid_header.title_id_min);
LOG_DEBUG(Service_FS, "Title ID Max: 0x{:016X}", acid_header.title_id_max); LOG_DEBUG(Service_FS, "Title ID Max: 0x{:016X}", acid_header.title_id_max);
LOG_DEBUG(Service_FS, "Filesystem Access: 0x{:016X}\n", acid_file_access.permissions); LOG_DEBUG(Service_FS, "Filesystem Access: 0x{:016X}\n", acid_file_access.permissions);

View File

@ -34,6 +34,13 @@ enum class ProgramFilePermission : u64 {
Everything = 1ULL << 63, Everything = 1ULL << 63,
}; };
enum class PoolPartition : u32 {
Application = 0,
Applet = 1,
System = 2,
SystemNonSecure = 3,
};
/** /**
* Helper which implements an interface to parse Program Description Metadata (NPDM) * Helper which implements an interface to parse Program Description Metadata (NPDM)
* Data can either be loaded from a file path or with data and an offset into it. * Data can either be loaded from a file path or with data and an offset into it.
@ -72,6 +79,7 @@ public:
u64 GetTitleID() const; u64 GetTitleID() const;
u64 GetFilesystemPermissions() const; u64 GetFilesystemPermissions() const;
u32 GetSystemResourceSize() const; u32 GetSystemResourceSize() const;
PoolPartition GetPoolPartition() const;
const KernelCapabilityDescriptors& GetKernelCapabilities() const; const KernelCapabilityDescriptors& GetKernelCapabilities() const;
const std::array<u8, 0x10>& GetName() const { const std::array<u8, 0x10>& GetName() const {
return npdm_header.application_name; return npdm_header.application_name;
@ -116,8 +124,9 @@ private:
union { union {
u32 flags; u32 flags;
BitField<0, 1, u32> is_retail; BitField<0, 1, u32> production_flag;
BitField<1, 31, u32> flags_unk; BitField<1, 1, u32> unqualified_approval;
BitField<2, 4, PoolPartition> pool_partition;
}; };
u64_le title_id_min; u64_le title_id_min;
u64_le title_id_max; u64_le title_id_max;

View File

@ -4,6 +4,7 @@
#include "core/arm/exclusive_monitor.h" #include "core/arm/exclusive_monitor.h"
#include "core/core.h" #include "core/core.h"
#include "core/hle/kernel/k_address_arbiter.h" #include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h" #include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
@ -26,9 +27,9 @@ bool ReadFromUser(KernelCore& kernel, s32* out, KProcessAddress address) {
return true; return true;
} }
bool DecrementIfLessThan(Core::System& system, s32* out, KProcessAddress address, s32 value) { bool DecrementIfLessThan(KernelCore& kernel, s32* out, KProcessAddress address, s32 value) {
auto& monitor = system.Monitor(); auto& monitor = GetCurrentProcess(kernel).GetExclusiveMonitor();
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex(); const auto current_core = kernel.CurrentPhysicalCoreIndex();
// NOTE: If scheduler lock is not held here, interrupt disable is required. // NOTE: If scheduler lock is not held here, interrupt disable is required.
// KScopedInterruptDisable di; // KScopedInterruptDisable di;
@ -66,10 +67,10 @@ bool DecrementIfLessThan(Core::System& system, s32* out, KProcessAddress address
return true; return true;
} }
bool UpdateIfEqual(Core::System& system, s32* out, KProcessAddress address, s32 value, bool UpdateIfEqual(KernelCore& kernel, s32* out, KProcessAddress address, s32 value,
s32 new_value) { s32 new_value) {
auto& monitor = system.Monitor(); auto& monitor = GetCurrentProcess(kernel).GetExclusiveMonitor();
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex(); const auto current_core = kernel.CurrentPhysicalCoreIndex();
// NOTE: If scheduler lock is not held here, interrupt disable is required. // NOTE: If scheduler lock is not held here, interrupt disable is required.
// KScopedInterruptDisable di; // KScopedInterruptDisable di;
@ -159,7 +160,7 @@ Result KAddressArbiter::SignalAndIncrementIfEqual(uint64_t addr, s32 value, s32
// Check the userspace value. // Check the userspace value.
s32 user_value{}; s32 user_value{};
R_UNLESS(UpdateIfEqual(m_system, std::addressof(user_value), addr, value, value + 1), R_UNLESS(UpdateIfEqual(m_kernel, std::addressof(user_value), addr, value, value + 1),
ResultInvalidCurrentMemory); ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, ResultInvalidState); R_UNLESS(user_value == value, ResultInvalidState);
@ -219,7 +220,7 @@ Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(uint64_t addr, s32
s32 user_value{}; s32 user_value{};
bool succeeded{}; bool succeeded{};
if (value != new_value) { if (value != new_value) {
succeeded = UpdateIfEqual(m_system, std::addressof(user_value), addr, value, new_value); succeeded = UpdateIfEqual(m_kernel, std::addressof(user_value), addr, value, new_value);
} else { } else {
succeeded = ReadFromUser(m_kernel, std::addressof(user_value), addr); succeeded = ReadFromUser(m_kernel, std::addressof(user_value), addr);
} }
@ -262,7 +263,7 @@ Result KAddressArbiter::WaitIfLessThan(uint64_t addr, s32 value, bool decrement,
s32 user_value{}; s32 user_value{};
bool succeeded{}; bool succeeded{};
if (decrement) { if (decrement) {
succeeded = DecrementIfLessThan(m_system, std::addressof(user_value), addr, value); succeeded = DecrementIfLessThan(m_kernel, std::addressof(user_value), addr, value);
} else { } else {
succeeded = ReadFromUser(m_kernel, std::addressof(user_value), addr); succeeded = ReadFromUser(m_kernel, std::addressof(user_value), addr);
} }

View File

@ -58,9 +58,8 @@ Result KClientPort::CreateSession(KClientSession** out) {
KSession* session{}; KSession* session{};
// Reserve a new session from the resource limit. // Reserve a new session from the resource limit.
//! FIXME: we are reserving this from the wrong resource limit! KScopedResourceReservation session_reservation(GetCurrentProcessPointer(m_kernel),
KScopedResourceReservation session_reservation( LimitableResource::SessionCountMax);
m_kernel.ApplicationProcess()->GetResourceLimit(), LimitableResource::SessionCountMax);
R_UNLESS(session_reservation.Succeeded(), ResultLimitReached); R_UNLESS(session_reservation.Succeeded(), ResultLimitReached);
// Allocate a session normally. // Allocate a session normally.

View File

@ -28,10 +28,10 @@ bool WriteToUser(KernelCore& kernel, KProcessAddress address, const u32* p) {
return true; return true;
} }
bool UpdateLockAtomic(Core::System& system, u32* out, KProcessAddress address, u32 if_zero, bool UpdateLockAtomic(KernelCore& kernel, u32* out, KProcessAddress address, u32 if_zero,
u32 new_orr_mask) { u32 new_orr_mask) {
auto& monitor = system.Monitor(); auto& monitor = GetCurrentProcess(kernel).GetExclusiveMonitor();
const auto current_core = system.Kernel().CurrentPhysicalCoreIndex(); const auto current_core = kernel.CurrentPhysicalCoreIndex();
u32 expected{}; u32 expected{};
@ -208,7 +208,7 @@ void KConditionVariable::SignalImpl(KThread* thread) {
// TODO(bunnei): We should call CanAccessAtomic(..) here. // TODO(bunnei): We should call CanAccessAtomic(..) here.
can_access = true; can_access = true;
if (can_access) [[likely]] { if (can_access) [[likely]] {
UpdateLockAtomic(m_system, std::addressof(prev_tag), address, own_tag, UpdateLockAtomic(m_kernel, std::addressof(prev_tag), address, own_tag,
Svc::HandleWaitMask); Svc::HandleWaitMask);
} }
} }

View File

@ -30,7 +30,7 @@ public:
public: public:
explicit KHandleTable(KernelCore& kernel) : m_kernel(kernel) {} explicit KHandleTable(KernelCore& kernel) : m_kernel(kernel) {}
Result Initialize(s32 size) { Result Initialize(KProcess* owner, s32 size) {
// Check that the table size is valid. // Check that the table size is valid.
R_UNLESS(size <= static_cast<s32>(MaxTableSize), ResultOutOfMemory); R_UNLESS(size <= static_cast<s32>(MaxTableSize), ResultOutOfMemory);
@ -44,6 +44,7 @@ public:
m_next_linear_id = MinLinearId; m_next_linear_id = MinLinearId;
m_count = 0; m_count = 0;
m_free_head_index = -1; m_free_head_index = -1;
m_owner = owner;
// Free all entries. // Free all entries.
for (s32 i = 0; i < static_cast<s32>(m_table_size); ++i) { for (s32 i = 0; i < static_cast<s32>(m_table_size); ++i) {
@ -90,8 +91,8 @@ public:
// Handle pseudo-handles. // Handle pseudo-handles.
if constexpr (std::derived_from<KProcess, T>) { if constexpr (std::derived_from<KProcess, T>) {
if (handle == Svc::PseudoHandle::CurrentProcess) { if (handle == Svc::PseudoHandle::CurrentProcess) {
//! FIXME: this is the wrong process! // TODO: this should be the current process
auto* const cur_process = m_kernel.ApplicationProcess(); auto* const cur_process = m_owner;
ASSERT(cur_process != nullptr); ASSERT(cur_process != nullptr);
return cur_process; return cur_process;
} }
@ -301,6 +302,7 @@ private:
private: private:
KernelCore& m_kernel; KernelCore& m_kernel;
KProcess* m_owner{};
std::array<EntryInfo, MaxTableSize> m_entry_infos{}; std::array<EntryInfo, MaxTableSize> m_entry_infos{};
std::array<KAutoObject*, MaxTableSize> m_objects{}; std::array<KAutoObject*, MaxTableSize> m_objects{};
mutable KSpinLock m_lock; mutable KSpinLock m_lock;

View File

@ -434,7 +434,7 @@ Result KPageTableBase::InitializeForProcess(Svc::CreateProcessFlag as_type, bool
void KPageTableBase::Finalize() { void KPageTableBase::Finalize() {
auto HostUnmapCallback = [&](KProcessAddress addr, u64 size) { auto HostUnmapCallback = [&](KProcessAddress addr, u64 size) {
if (Settings::IsFastmemEnabled()) { if (Settings::IsFastmemEnabled()) {
m_system.DeviceMemory().buffer.Unmap(GetInteger(addr), size); m_system.DeviceMemory().buffer.Unmap(GetInteger(addr), size, false);
} }
}; };
@ -5243,7 +5243,7 @@ Result KPageTableBase::MapPhysicalMemory(KProcessAddress address, size_t size) {
// Unmap. // Unmap.
R_ASSERT(this->Operate(updater.GetPageList(), cur_address, R_ASSERT(this->Operate(updater.GetPageList(), cur_address,
cur_pages, 0, false, unmap_properties, cur_pages, 0, false, unmap_properties,
OperationType::Unmap, true)); OperationType::UnmapPhysical, true));
} }
// Check if we're done. // Check if we're done.
@ -5326,7 +5326,7 @@ Result KPageTableBase::MapPhysicalMemory(KProcessAddress address, size_t size) {
// Map the papges. // Map the papges.
R_TRY(this->Operate(updater.GetPageList(), cur_address, map_pages, R_TRY(this->Operate(updater.GetPageList(), cur_address, map_pages,
cur_pg, map_properties, cur_pg, map_properties,
OperationType::MapFirstGroup, false)); OperationType::MapFirstGroupPhysical, false));
} }
} }
@ -5480,7 +5480,7 @@ Result KPageTableBase::UnmapPhysicalMemory(KProcessAddress address, size_t size)
// Unmap. // Unmap.
R_ASSERT(this->Operate(updater.GetPageList(), cur_address, cur_pages, 0, false, R_ASSERT(this->Operate(updater.GetPageList(), cur_address, cur_pages, 0, false,
unmap_properties, OperationType::Unmap, false)); unmap_properties, OperationType::UnmapPhysical, false));
} }
// Check if we're done. // Check if we're done.
@ -5655,7 +5655,10 @@ Result KPageTableBase::Operate(PageLinkedList* page_list, KProcessAddress virt_a
// or free them to the page list, and so it goes unused (along with page properties). // or free them to the page list, and so it goes unused (along with page properties).
switch (operation) { switch (operation) {
case OperationType::Unmap: { case OperationType::Unmap:
case OperationType::UnmapPhysical: {
const bool separate_heap = operation == OperationType::UnmapPhysical;
// Ensure that any pages we track are closed on exit. // Ensure that any pages we track are closed on exit.
KPageGroup pages_to_close(m_kernel, this->GetBlockInfoManager()); KPageGroup pages_to_close(m_kernel, this->GetBlockInfoManager());
SCOPE_EXIT({ pages_to_close.CloseAndReset(); }); SCOPE_EXIT({ pages_to_close.CloseAndReset(); });
@ -5664,7 +5667,7 @@ Result KPageTableBase::Operate(PageLinkedList* page_list, KProcessAddress virt_a
this->MakePageGroup(pages_to_close, virt_addr, num_pages); this->MakePageGroup(pages_to_close, virt_addr, num_pages);
// Unmap. // Unmap.
m_memory->UnmapRegion(*m_impl, virt_addr, num_pages * PageSize); m_memory->UnmapRegion(*m_impl, virt_addr, num_pages * PageSize, separate_heap);
R_SUCCEED(); R_SUCCEED();
} }
@ -5672,7 +5675,7 @@ Result KPageTableBase::Operate(PageLinkedList* page_list, KProcessAddress virt_a
ASSERT(virt_addr != 0); ASSERT(virt_addr != 0);
ASSERT(Common::IsAligned(GetInteger(virt_addr), PageSize)); ASSERT(Common::IsAligned(GetInteger(virt_addr), PageSize));
m_memory->MapMemoryRegion(*m_impl, virt_addr, num_pages * PageSize, phys_addr, m_memory->MapMemoryRegion(*m_impl, virt_addr, num_pages * PageSize, phys_addr,
ConvertToMemoryPermission(properties.perm)); ConvertToMemoryPermission(properties.perm), false);
// Open references to pages, if we should. // Open references to pages, if we should.
if (this->IsHeapPhysicalAddress(phys_addr)) { if (this->IsHeapPhysicalAddress(phys_addr)) {
@ -5711,16 +5714,19 @@ Result KPageTableBase::Operate(PageLinkedList* page_list, KProcessAddress virt_a
switch (operation) { switch (operation) {
case OperationType::MapGroup: case OperationType::MapGroup:
case OperationType::MapFirstGroup: { case OperationType::MapFirstGroup:
case OperationType::MapFirstGroupPhysical: {
const bool separate_heap = operation == OperationType::MapFirstGroupPhysical;
// We want to maintain a new reference to every page in the group. // We want to maintain a new reference to every page in the group.
KScopedPageGroup spg(page_group, operation != OperationType::MapFirstGroup); KScopedPageGroup spg(page_group, operation == OperationType::MapGroup);
for (const auto& node : page_group) { for (const auto& node : page_group) {
const size_t size{node.GetNumPages() * PageSize}; const size_t size{node.GetNumPages() * PageSize};
// Map the pages. // Map the pages.
m_memory->MapMemoryRegion(*m_impl, virt_addr, size, node.GetAddress(), m_memory->MapMemoryRegion(*m_impl, virt_addr, size, node.GetAddress(),
ConvertToMemoryPermission(properties.perm)); ConvertToMemoryPermission(properties.perm), separate_heap);
virt_addr += size; virt_addr += size;
} }

View File

@ -104,6 +104,9 @@ protected:
ChangePermissionsAndRefresh = 5, ChangePermissionsAndRefresh = 5,
ChangePermissionsAndRefreshAndFlush = 6, ChangePermissionsAndRefreshAndFlush = 6,
Separate = 7, Separate = 7,
MapFirstGroupPhysical = 65000,
UnmapPhysical = 65001,
}; };
static constexpr size_t MaxPhysicalMapAlignment = 1_GiB; static constexpr size_t MaxPhysicalMapAlignment = 1_GiB;

View File

@ -306,12 +306,16 @@ Result KProcess::Initialize(const Svc::CreateProcessParameter& params, const KPa
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge); False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, params.code_num_pages * PageSize, params.code_address, params.code_num_pages * PageSize,
m_system_resource, res_limit, this->GetMemory(), 0)); m_system_resource, res_limit, m_memory, 0));
} }
ON_RESULT_FAILURE_2 { ON_RESULT_FAILURE_2 {
m_page_table.Finalize(); m_page_table.Finalize();
}; };
// Ensure our memory is initialized.
m_memory.SetCurrentPageTable(*this);
m_memory.SetGPUDirtyManagers(m_dirty_memory_managers);
// Ensure we can insert the code region. // Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize, R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize,
KMemoryState::Code), KMemoryState::Code),
@ -399,12 +403,16 @@ Result KProcess::Initialize(const Svc::CreateProcessParameter& params,
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge); False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, code_size, m_system_resource, res_limit, params.code_address, code_size, m_system_resource, res_limit,
this->GetMemory(), aslr_space_start)); m_memory, aslr_space_start));
} }
ON_RESULT_FAILURE_2 { ON_RESULT_FAILURE_2 {
m_page_table.Finalize(); m_page_table.Finalize();
}; };
// Ensure our memory is initialized.
m_memory.SetCurrentPageTable(*this);
m_memory.SetGPUDirtyManagers(m_dirty_memory_managers);
// Ensure we can insert the code region. // Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState::Code), R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState::Code),
ResultInvalidMemoryRegion); ResultInvalidMemoryRegion);
@ -1094,8 +1102,7 @@ void KProcess::UnpinThread(KThread* thread) {
Result KProcess::GetThreadList(s32* out_num_threads, KProcessAddress out_thread_ids, Result KProcess::GetThreadList(s32* out_num_threads, KProcessAddress out_thread_ids,
s32 max_out_count) { s32 max_out_count) {
// TODO: use current memory reference auto& memory = this->GetMemory();
auto& memory = m_kernel.System().ApplicationMemory();
// Lock the list. // Lock the list.
KScopedLightLock lk(m_list_lock); KScopedLightLock lk(m_list_lock);
@ -1128,14 +1135,15 @@ void KProcess::Switch(KProcess* cur_process, KProcess* next_process) {}
KProcess::KProcess(KernelCore& kernel) KProcess::KProcess(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel}, m_state_lock{kernel}, : KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel}, m_state_lock{kernel},
m_list_lock{kernel}, m_cond_var{kernel.System()}, m_address_arbiter{kernel.System()}, m_list_lock{kernel}, m_cond_var{kernel.System()}, m_address_arbiter{kernel.System()},
m_handle_table{kernel} {} m_handle_table{kernel}, m_dirty_memory_managers{},
m_exclusive_monitor{}, m_memory{kernel.System()} {}
KProcess::~KProcess() = default; KProcess::~KProcess() = default;
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size, Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
KProcessAddress aslr_space_start, bool is_hbl) { KProcessAddress aslr_space_start, bool is_hbl) {
// Create a resource limit for the process. // Create a resource limit for the process.
const auto physical_memory_size = const auto pool = static_cast<KMemoryManager::Pool>(metadata.GetPoolPartition());
m_kernel.MemoryManager().GetSize(Kernel::KMemoryManager::Pool::Application); const auto physical_memory_size = m_kernel.MemoryManager().GetSize(pool);
auto* res_limit = auto* res_limit =
Kernel::CreateResourceLimitForProcess(m_kernel.System(), physical_memory_size); Kernel::CreateResourceLimitForProcess(m_kernel.System(), physical_memory_size);
@ -1146,8 +1154,10 @@ Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std:
Svc::CreateProcessFlag flag{}; Svc::CreateProcessFlag flag{};
u64 code_address{}; u64 code_address{};
// We are an application. // Determine if we are an application.
flag |= Svc::CreateProcessFlag::IsApplication; if (pool == KMemoryManager::Pool::Application) {
flag |= Svc::CreateProcessFlag::IsApplication;
}
// If we are 64-bit, create as such. // If we are 64-bit, create as such.
if (metadata.Is64BitProgram()) { if (metadata.Is64BitProgram()) {
@ -1196,8 +1206,8 @@ Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std:
std::memcpy(params.name.data(), name.data(), sizeof(params.name)); std::memcpy(params.name.data(), name.data(), sizeof(params.name));
// Initialize for application process. // Initialize for application process.
R_TRY(this->Initialize(params, metadata.GetKernelCapabilities(), res_limit, R_TRY(this->Initialize(params, metadata.GetKernelCapabilities(), res_limit, pool,
KMemoryManager::Pool::Application, aslr_space_start)); aslr_space_start));
// Assign remaining properties. // Assign remaining properties.
m_is_hbl = is_hbl; m_is_hbl = is_hbl;
@ -1223,22 +1233,25 @@ void KProcess::LoadModule(CodeSet code_set, KProcessAddress base_addr) {
ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite); ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
#ifdef HAS_NCE #ifdef HAS_NCE
if (Settings::IsNceEnabled()) { if (this->IsApplication() && Settings::IsNceEnabled()) {
auto& buffer = m_kernel.System().DeviceMemory().buffer; auto& buffer = m_kernel.System().DeviceMemory().buffer;
const auto& code = code_set.CodeSegment(); const auto& code = code_set.CodeSegment();
const auto& patch = code_set.PatchSegment(); const auto& patch = code_set.PatchSegment();
buffer.Protect(GetInteger(base_addr + code.addr), code.size, true, true, true); buffer.Protect(GetInteger(base_addr + code.addr), code.size,
buffer.Protect(GetInteger(base_addr + patch.addr), patch.size, true, true, true); Common::MemoryPermission::Read | Common::MemoryPermission::Execute);
buffer.Protect(GetInteger(base_addr + patch.addr), patch.size,
Common::MemoryPermission::Read | Common::MemoryPermission::Execute);
ReprotectSegment(code_set.PatchSegment(), Svc::MemoryPermission::None); ReprotectSegment(code_set.PatchSegment(), Svc::MemoryPermission::None);
} }
#endif #endif
} }
void KProcess::InitializeInterfaces() { void KProcess::InitializeInterfaces() {
this->GetMemory().SetCurrentPageTable(*this); m_exclusive_monitor =
Core::MakeExclusiveMonitor(this->GetMemory(), Core::Hardware::NUM_CPU_CORES);
#ifdef HAS_NCE #ifdef HAS_NCE
if (this->Is64Bit() && Settings::IsNceEnabled()) { if (this->IsApplication() && Settings::IsNceEnabled()) {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmNce>(m_kernel.System(), true, i); m_arm_interfaces[i] = std::make_unique<Core::ArmNce>(m_kernel.System(), true, i);
} }
@ -1248,13 +1261,13 @@ void KProcess::InitializeInterfaces() {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic64>( m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic64>(
m_kernel.System(), m_kernel.IsMulticore(), this, m_kernel.System(), m_kernel.IsMulticore(), this,
static_cast<Core::DynarmicExclusiveMonitor&>(m_kernel.GetExclusiveMonitor()), i); static_cast<Core::DynarmicExclusiveMonitor&>(*m_exclusive_monitor), i);
} }
} else { } else {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic32>( m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic32>(
m_kernel.System(), m_kernel.IsMulticore(), this, m_kernel.System(), m_kernel.IsMulticore(), this,
static_cast<Core::DynarmicExclusiveMonitor&>(m_kernel.GetExclusiveMonitor()), i); static_cast<Core::DynarmicExclusiveMonitor&>(*m_exclusive_monitor), i);
} }
} }
} }
@ -1305,9 +1318,10 @@ bool KProcess::RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointT
return true; return true;
} }
Core::Memory::Memory& KProcess::GetMemory() const { void KProcess::GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback) {
// TODO: per-process memory for (auto& manager : m_dirty_memory_managers) {
return m_kernel.System().ApplicationMemory(); manager.Gather(callback);
}
} }
} // namespace Kernel } // namespace Kernel

View File

@ -7,6 +7,7 @@
#include "core/arm/arm_interface.h" #include "core/arm/arm_interface.h"
#include "core/file_sys/program_metadata.h" #include "core/file_sys/program_metadata.h"
#include "core/gpu_dirty_memory_manager.h"
#include "core/hle/kernel/code_set.h" #include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/k_address_arbiter.h" #include "core/hle/kernel/k_address_arbiter.h"
#include "core/hle/kernel/k_capabilities.h" #include "core/hle/kernel/k_capabilities.h"
@ -17,6 +18,7 @@
#include "core/hle/kernel/k_system_resource.h" #include "core/hle/kernel/k_system_resource.h"
#include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_local_page.h" #include "core/hle/kernel/k_thread_local_page.h"
#include "core/memory.h"
namespace Kernel { namespace Kernel {
@ -126,6 +128,9 @@ private:
#ifdef HAS_NCE #ifdef HAS_NCE
std::unordered_map<u64, u64> m_post_handlers{}; std::unordered_map<u64, u64> m_post_handlers{};
#endif #endif
std::array<Core::GPUDirtyMemoryManager, Core::Hardware::NUM_CPU_CORES> m_dirty_memory_managers;
std::unique_ptr<Core::ExclusiveMonitor> m_exclusive_monitor;
Core::Memory::Memory m_memory;
private: private:
Result StartTermination(); Result StartTermination();
@ -502,7 +507,15 @@ public:
void InitializeInterfaces(); void InitializeInterfaces();
Core::Memory::Memory& GetMemory() const; Core::Memory::Memory& GetMemory() {
return m_memory;
}
void GatherGPUDirtyMemory(std::function<void(VAddr, size_t)>& callback);
Core::ExclusiveMonitor& GetExclusiveMonitor() const {
return *m_exclusive_monitor;
}
public: public:
// Overridden parent functions. // Overridden parent functions.
@ -539,7 +552,7 @@ private:
Result InitializeHandleTable(s32 size) { Result InitializeHandleTable(s32 size) {
// Try to initialize the handle table. // Try to initialize the handle table.
R_TRY(m_handle_table.Initialize(size)); R_TRY(m_handle_table.Initialize(this, size));
// We succeeded, so note that we did. // We succeeded, so note that we did.
m_is_handle_table_initialized = true; m_is_handle_table_initialized = true;

File diff suppressed because it is too large Load Diff

View File

@ -49,14 +49,21 @@ public:
bool IsSignaled() const override; bool IsSignaled() const override;
void OnClientClosed(); void OnClientClosed();
/// TODO: flesh these out to match the real kernel
Result OnRequest(KSessionRequest* request); Result OnRequest(KSessionRequest* request);
Result SendReply(bool is_hle = false); Result SendReply(uintptr_t server_message, uintptr_t server_buffer_size,
Result ReceiveRequest(std::shared_ptr<Service::HLERequestContext>* out_context = nullptr, KPhysicalAddress server_message_paddr, bool is_hle = false);
Result ReceiveRequest(uintptr_t server_message, uintptr_t server_buffer_size,
KPhysicalAddress server_message_paddr,
std::shared_ptr<Service::HLERequestContext>* out_context = nullptr,
std::weak_ptr<Service::SessionRequestManager> manager = {}); std::weak_ptr<Service::SessionRequestManager> manager = {});
Result SendReplyHLE() { Result SendReplyHLE() {
return SendReply(true); R_RETURN(this->SendReply(0, 0, 0, true));
}
Result ReceiveRequestHLE(std::shared_ptr<Service::HLERequestContext>* out_context,
std::weak_ptr<Service::SessionRequestManager> manager) {
R_RETURN(this->ReceiveRequest(0, 0, 0, out_context, manager));
} }
private: private:

View File

@ -33,8 +33,7 @@ void KSession::Initialize(KClientPort* client_port, uintptr_t name) {
m_name = name; m_name = name;
// Set our owner process. // Set our owner process.
//! FIXME: this is the wrong process! m_process = GetCurrentProcessPointer(m_kernel);
m_process = m_kernel.ApplicationProcess();
m_process->Open(); m_process->Open();
// Set our port. // Set our port.

View File

@ -1422,8 +1422,7 @@ s32 GetCurrentCoreId(KernelCore& kernel) {
} }
Core::Memory::Memory& GetCurrentMemory(KernelCore& kernel) { Core::Memory::Memory& GetCurrentMemory(KernelCore& kernel) {
// TODO: per-process memory return GetCurrentProcess(kernel).GetMemory();
return kernel.System().ApplicationMemory();
} }
KScopedDisableDispatch::~KScopedDisableDispatch() { KScopedDisableDispatch::~KScopedDisableDispatch() {

View File

@ -314,11 +314,7 @@ public:
m_current_core_id = core; m_current_core_id = core;
} }
KProcess* GetOwnerProcess() { KProcess* GetOwnerProcess() const {
return m_parent;
}
const KProcess* GetOwnerProcess() const {
return m_parent; return m_parent;
} }

View File

@ -68,8 +68,6 @@ struct KernelCore::Impl {
global_object_list_container = std::make_unique<KAutoObjectWithListContainer>(kernel); global_object_list_container = std::make_unique<KAutoObjectWithListContainer>(kernel);
global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel); global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel);
global_handle_table = std::make_unique<Kernel::KHandleTable>(kernel);
global_handle_table->Initialize(KHandleTable::MaxTableSize);
is_phantom_mode_for_singlecore = false; is_phantom_mode_for_singlecore = false;
@ -121,13 +119,8 @@ struct KernelCore::Impl {
next_user_process_id = KProcess::ProcessIdMin; next_user_process_id = KProcess::ProcessIdMin;
next_thread_id = 1; next_thread_id = 1;
global_handle_table->Finalize();
global_handle_table.reset();
preemption_event = nullptr; preemption_event = nullptr;
exclusive_monitor.reset();
// Cleanup persistent kernel objects // Cleanup persistent kernel objects
auto CleanupObject = [](KAutoObject* obj) { auto CleanupObject = [](KAutoObject* obj) {
if (obj) { if (obj) {
@ -191,8 +184,6 @@ struct KernelCore::Impl {
} }
void InitializePhysicalCores() { void InitializePhysicalCores() {
exclusive_monitor =
Core::MakeExclusiveMonitor(system.ApplicationMemory(), Core::Hardware::NUM_CPU_CORES);
for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
const s32 core{static_cast<s32>(i)}; const s32 core{static_cast<s32>(i)};
@ -791,10 +782,6 @@ struct KernelCore::Impl {
std::shared_ptr<Core::Timing::EventType> preemption_event; std::shared_ptr<Core::Timing::EventType> preemption_event;
// This is the kernel's handle table or supervisor handle table which
// stores all the objects in place.
std::unique_ptr<KHandleTable> global_handle_table;
std::unique_ptr<KAutoObjectWithListContainer> global_object_list_container; std::unique_ptr<KAutoObjectWithListContainer> global_object_list_container;
std::unique_ptr<KObjectNameGlobalData> object_name_global_data; std::unique_ptr<KObjectNameGlobalData> object_name_global_data;
@ -805,7 +792,6 @@ struct KernelCore::Impl {
std::mutex server_lock; std::mutex server_lock;
std::vector<std::unique_ptr<Service::ServerManager>> server_managers; std::vector<std::unique_ptr<Service::ServerManager>> server_managers;
std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
std::array<std::unique_ptr<Kernel::PhysicalCore>, Core::Hardware::NUM_CPU_CORES> cores; std::array<std::unique_ptr<Kernel::PhysicalCore>, Core::Hardware::NUM_CPU_CORES> cores;
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others // Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
@ -882,10 +868,6 @@ KResourceLimit* KernelCore::GetSystemResourceLimit() {
return impl->system_resource_limit; return impl->system_resource_limit;
} }
KScopedAutoObject<KThread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const {
return impl->global_handle_table->GetObject<KThread>(handle);
}
void KernelCore::AppendNewProcess(KProcess* process) { void KernelCore::AppendNewProcess(KProcess* process) {
impl->process_list.push_back(process); impl->process_list.push_back(process);
} }
@ -959,14 +941,6 @@ Kernel::KHardwareTimer& KernelCore::HardwareTimer() {
return *impl->hardware_timer; return *impl->hardware_timer;
} }
Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() {
return *impl->exclusive_monitor;
}
const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
return *impl->exclusive_monitor;
}
KAutoObjectWithListContainer& KernelCore::ObjectListContainer() { KAutoObjectWithListContainer& KernelCore::ObjectListContainer() {
return *impl->global_object_list_container; return *impl->global_object_list_container;
} }
@ -1030,14 +1004,6 @@ u64 KernelCore::CreateNewUserProcessID() {
return impl->next_user_process_id++; return impl->next_user_process_id++;
} }
KHandleTable& KernelCore::GlobalHandleTable() {
return *impl->global_handle_table;
}
const KHandleTable& KernelCore::GlobalHandleTable() const {
return *impl->global_handle_table;
}
void KernelCore::RegisterCoreThread(std::size_t core_id) { void KernelCore::RegisterCoreThread(std::size_t core_id) {
impl->RegisterCoreThread(core_id); impl->RegisterCoreThread(core_id);
} }

View File

@ -116,9 +116,6 @@ public:
/// Retrieves a shared pointer to the system resource limit instance. /// Retrieves a shared pointer to the system resource limit instance.
KResourceLimit* GetSystemResourceLimit(); KResourceLimit* GetSystemResourceLimit();
/// Retrieves a shared pointer to a Thread instance within the thread wakeup handle table.
KScopedAutoObject<KThread> RetrieveThreadFromGlobalHandleTable(Handle handle) const;
/// Adds the given shared pointer to an internal list of active processes. /// Adds the given shared pointer to an internal list of active processes.
void AppendNewProcess(KProcess* process); void AppendNewProcess(KProcess* process);
@ -170,10 +167,6 @@ public:
/// Stops execution of 'id' core, in order to reschedule a new thread. /// Stops execution of 'id' core, in order to reschedule a new thread.
void PrepareReschedule(std::size_t id); void PrepareReschedule(std::size_t id);
Core::ExclusiveMonitor& GetExclusiveMonitor();
const Core::ExclusiveMonitor& GetExclusiveMonitor() const;
KAutoObjectWithListContainer& ObjectListContainer(); KAutoObjectWithListContainer& ObjectListContainer();
const KAutoObjectWithListContainer& ObjectListContainer() const; const KAutoObjectWithListContainer& ObjectListContainer() const;

View File

@ -18,13 +18,13 @@ public:
static constexpr inline u64 NullTag = 0; static constexpr inline u64 NullTag = 0;
public: public:
enum class ReceiveListCountType : u32 { enum ReceiveListCountType : u32 {
None = 0, ReceiveListCountType_None = 0,
ToMessageBuffer = 1, ReceiveListCountType_ToMessageBuffer = 1,
ToSingleBuffer = 2, ReceiveListCountType_ToSingleBuffer = 2,
CountOffset = 2, ReceiveListCountType_CountOffset = 2,
CountMax = 13, ReceiveListCountType_CountMax = 13,
}; };
private: private:
@ -591,16 +591,16 @@ public:
// Add the size of the receive list. // Add the size of the receive list.
const auto count = hdr.GetReceiveListCount(); const auto count = hdr.GetReceiveListCount();
switch (count) { switch (count) {
case MessageHeader::ReceiveListCountType::None: case MessageHeader::ReceiveListCountType_None:
break; break;
case MessageHeader::ReceiveListCountType::ToMessageBuffer: case MessageHeader::ReceiveListCountType_ToMessageBuffer:
break; break;
case MessageHeader::ReceiveListCountType::ToSingleBuffer: case MessageHeader::ReceiveListCountType_ToSingleBuffer:
msg_size += ReceiveListEntry::GetDataSize(); msg_size += ReceiveListEntry::GetDataSize();
break; break;
default: default:
msg_size += (static_cast<s32>(count) - msg_size += (static_cast<s32>(count) -
static_cast<s32>(MessageHeader::ReceiveListCountType::CountOffset)) * static_cast<s32>(MessageHeader::ReceiveListCountType_CountOffset)) *
ReceiveListEntry::GetDataSize(); ReceiveListEntry::GetDataSize();
break; break;
} }

View File

@ -118,7 +118,6 @@ Result GetInfo(Core::System& system, u64* result, InfoType info_id_type, Handle
R_SUCCEED(); R_SUCCEED();
case InfoType::IsApplication: case InfoType::IsApplication:
LOG_WARNING(Kernel_SVC, "(STUBBED) Assuming process is application");
*result = process->IsApplication(); *result = process->IsApplication();
R_SUCCEED(); R_SUCCEED();

View File

@ -48,8 +48,7 @@ Result ReplyAndReceiveImpl(KernelCore& kernel, int32_t* out_index, uintptr_t mes
}; };
// Send the reply. // Send the reply.
R_TRY(session->SendReply()); R_TRY(session->SendReply(message, buffer_size, message_paddr));
// R_TRY(session->SendReply(message, buffer_size, message_paddr));
} }
// Receive a message. // Receive a message.
@ -85,8 +84,7 @@ Result ReplyAndReceiveImpl(KernelCore& kernel, int32_t* out_index, uintptr_t mes
if (R_SUCCEEDED(result)) { if (R_SUCCEEDED(result)) {
KServerSession* session = objs[index]->DynamicCast<KServerSession*>(); KServerSession* session = objs[index]->DynamicCast<KServerSession*>();
if (session != nullptr) { if (session != nullptr) {
// result = session->ReceiveRequest(message, buffer_size, message_paddr); result = session->ReceiveRequest(message, buffer_size, message_paddr);
result = session->ReceiveRequest();
if (ResultNotFound == result) { if (ResultNotFound == result) {
continue; continue;
} }

View File

@ -38,7 +38,9 @@ constexpr Result ResultInvalidState{ErrorModule::Kernel, 125};
constexpr Result ResultReservedUsed{ErrorModule::Kernel, 126}; constexpr Result ResultReservedUsed{ErrorModule::Kernel, 126};
constexpr Result ResultPortClosed{ErrorModule::Kernel, 131}; constexpr Result ResultPortClosed{ErrorModule::Kernel, 131};
constexpr Result ResultLimitReached{ErrorModule::Kernel, 132}; constexpr Result ResultLimitReached{ErrorModule::Kernel, 132};
constexpr Result ResultReceiveListBroken{ErrorModule::Kernel, 258};
constexpr Result ResultOutOfAddressSpace{ErrorModule::Kernel, 259}; constexpr Result ResultOutOfAddressSpace{ErrorModule::Kernel, 259};
constexpr Result ResultMessageTooLarge{ErrorModule::Kernel, 260};
constexpr Result ResultInvalidId{ErrorModule::Kernel, 519}; constexpr Result ResultInvalidId{ErrorModule::Kernel, 519};
} // namespace Kernel } // namespace Kernel

View File

@ -89,7 +89,7 @@ static void GenerateErrorReport(Core::System& system, Result error_code, const F
crash_report += fmt::format(" ESR: {:016x}\n", info.esr); crash_report += fmt::format(" ESR: {:016x}\n", info.esr);
crash_report += fmt::format(" FAR: {:016x}\n", info.far); crash_report += fmt::format(" FAR: {:016x}\n", info.far);
crash_report += "\nBacktrace:\n"; crash_report += "\nBacktrace:\n";
for (size_t i = 0; i < info.backtrace_size; i++) { for (u32 i = 0; i < std::min<u32>(info.backtrace_size, 32); i++) {
crash_report += crash_report +=
fmt::format(" Backtrace[{:02d}]: {:016x}\n", i, info.backtrace[i]); fmt::format(" Backtrace[{:02d}]: {:016x}\n", i, info.backtrace[i]);
} }

View File

@ -151,8 +151,8 @@ public:
if (manager->IsDomain()) { if (manager->IsDomain()) {
context->AddDomainObject(std::move(iface)); context->AddDomainObject(std::move(iface));
} else { } else {
kernel.ApplicationProcess()->GetResourceLimit()->Reserve( ASSERT(Kernel::GetCurrentProcess(kernel).GetResourceLimit()->Reserve(
Kernel::LimitableResource::SessionCountMax, 1); Kernel::LimitableResource::SessionCountMax, 1));
auto* session = Kernel::KSession::Create(kernel); auto* session = Kernel::KSession::Create(kernel);
session->Initialize(nullptr, 0); session->Initialize(nullptr, 0);

View File

@ -47,7 +47,7 @@ ServerManager::~ServerManager() {
m_stopped.Wait(); m_stopped.Wait();
m_threads.clear(); m_threads.clear();
// Clean up ports. // Clean up server ports.
for (const auto& [port, handler] : m_ports) { for (const auto& [port, handler] : m_ports) {
port->Close(); port->Close();
} }
@ -97,22 +97,15 @@ Result ServerManager::RegisterNamedService(const std::string& service_name,
u32 max_sessions) { u32 max_sessions) {
ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects); ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);
// Add the new server to sm:. // Add the new server to sm: and get the moved server port.
ASSERT(R_SUCCEEDED( Kernel::KServerPort* server_port{};
m_system.ServiceManager().RegisterService(service_name, max_sessions, handler_factory))); R_ASSERT(m_system.ServiceManager().RegisterService(std::addressof(server_port), service_name,
max_sessions, handler_factory));
// Get the registered port.
Kernel::KPort* port{};
ASSERT(
R_SUCCEEDED(m_system.ServiceManager().GetServicePort(std::addressof(port), service_name)));
// Open a new reference to the server port.
port->GetServerPort().Open();
// Begin tracking the server port. // Begin tracking the server port.
{ {
std::scoped_lock ll{m_list_mutex}; std::scoped_lock ll{m_list_mutex};
m_ports.emplace(std::addressof(port->GetServerPort()), std::move(handler_factory)); m_ports.emplace(server_port, std::move(handler_factory));
} }
// Signal the wakeup event. // Signal the wakeup event.
@ -372,7 +365,7 @@ Result ServerManager::OnSessionEvent(Kernel::KServerSession* session,
// Try to receive a message. // Try to receive a message.
std::shared_ptr<HLERequestContext> context; std::shared_ptr<HLERequestContext> context;
rc = session->ReceiveRequest(&context, manager); rc = session->ReceiveRequestHLE(&context, manager);
// If the session has been closed, we're done. // If the session has been closed, we're done.
if (rc == Kernel::ResultSessionClosed) { if (rc == Kernel::ResultSessionClosed) {

View File

@ -507,6 +507,14 @@ void SET_SYS::SetTvSettings(HLERequestContext& ctx) {
rb.Push(ResultSuccess); rb.Push(ResultSuccess);
} }
void SET_SYS::GetDebugModeFlag(HLERequestContext& ctx) {
LOG_DEBUG(Service_SET, "called");
IPC::ResponseBuilder rb{ctx, 3};
rb.Push(ResultSuccess);
rb.Push<u32>(0);
}
void SET_SYS::GetQuestFlag(HLERequestContext& ctx) { void SET_SYS::GetQuestFlag(HLERequestContext& ctx) {
LOG_WARNING(Service_SET, "(STUBBED) called"); LOG_WARNING(Service_SET, "(STUBBED) called");
@ -926,7 +934,7 @@ SET_SYS::SET_SYS(Core::System& system_) : ServiceFramework{system_, "set:sys"},
{59, &SET_SYS::SetNetworkSystemClockContext, "SetNetworkSystemClockContext"}, {59, &SET_SYS::SetNetworkSystemClockContext, "SetNetworkSystemClockContext"},
{60, &SET_SYS::IsUserSystemClockAutomaticCorrectionEnabled, "IsUserSystemClockAutomaticCorrectionEnabled"}, {60, &SET_SYS::IsUserSystemClockAutomaticCorrectionEnabled, "IsUserSystemClockAutomaticCorrectionEnabled"},
{61, &SET_SYS::SetUserSystemClockAutomaticCorrectionEnabled, "SetUserSystemClockAutomaticCorrectionEnabled"}, {61, &SET_SYS::SetUserSystemClockAutomaticCorrectionEnabled, "SetUserSystemClockAutomaticCorrectionEnabled"},
{62, nullptr, "GetDebugModeFlag"}, {62, &SET_SYS::GetDebugModeFlag, "GetDebugModeFlag"},
{63, &SET_SYS::GetPrimaryAlbumStorage, "GetPrimaryAlbumStorage"}, {63, &SET_SYS::GetPrimaryAlbumStorage, "GetPrimaryAlbumStorage"},
{64, nullptr, "SetPrimaryAlbumStorage"}, {64, nullptr, "SetPrimaryAlbumStorage"},
{65, nullptr, "GetUsb30EnableFlag"}, {65, nullptr, "GetUsb30EnableFlag"},
@ -1143,6 +1151,8 @@ void SET_SYS::StoreSettings() {
} }
void SET_SYS::StoreSettingsThreadFunc(std::stop_token stop_token) { void SET_SYS::StoreSettingsThreadFunc(std::stop_token stop_token) {
Common::SetCurrentThreadName("SettingsStore");
while (Common::StoppableTimedWait(stop_token, std::chrono::minutes(1))) { while (Common::StoppableTimedWait(stop_token, std::chrono::minutes(1))) {
std::scoped_lock l{m_save_needed_mutex}; std::scoped_lock l{m_save_needed_mutex};
if (!std::exchange(m_save_needed, false)) { if (!std::exchange(m_save_needed, false)) {

View File

@ -98,6 +98,7 @@ private:
void GetSettingsItemValue(HLERequestContext& ctx); void GetSettingsItemValue(HLERequestContext& ctx);
void GetTvSettings(HLERequestContext& ctx); void GetTvSettings(HLERequestContext& ctx);
void SetTvSettings(HLERequestContext& ctx); void SetTvSettings(HLERequestContext& ctx);
void GetDebugModeFlag(HLERequestContext& ctx);
void GetQuestFlag(HLERequestContext& ctx); void GetQuestFlag(HLERequestContext& ctx);
void GetDeviceTimeZoneLocationName(HLERequestContext& ctx); void GetDeviceTimeZoneLocationName(HLERequestContext& ctx);
void SetDeviceTimeZoneLocationName(HLERequestContext& ctx); void SetDeviceTimeZoneLocationName(HLERequestContext& ctx);

View File

@ -29,8 +29,7 @@ ServiceManager::ServiceManager(Kernel::KernelCore& kernel_) : kernel{kernel_} {
ServiceManager::~ServiceManager() { ServiceManager::~ServiceManager() {
for (auto& [name, port] : service_ports) { for (auto& [name, port] : service_ports) {
port->GetClientPort().Close(); port->Close();
port->GetServerPort().Close();
} }
if (deferral_event) { if (deferral_event) {
@ -50,8 +49,8 @@ static Result ValidateServiceName(const std::string& name) {
return ResultSuccess; return ResultSuccess;
} }
Result ServiceManager::RegisterService(std::string name, u32 max_sessions, Result ServiceManager::RegisterService(Kernel::KServerPort** out_server_port, std::string name,
SessionRequestHandlerFactory handler) { u32 max_sessions, SessionRequestHandlerFactory handler) {
R_TRY(ValidateServiceName(name)); R_TRY(ValidateServiceName(name));
std::scoped_lock lk{lock}; std::scoped_lock lk{lock};
@ -66,13 +65,17 @@ Result ServiceManager::RegisterService(std::string name, u32 max_sessions,
// Register the port. // Register the port.
Kernel::KPort::Register(kernel, port); Kernel::KPort::Register(kernel, port);
service_ports.emplace(name, port); service_ports.emplace(name, std::addressof(port->GetClientPort()));
registered_services.emplace(name, handler); registered_services.emplace(name, handler);
if (deferral_event) { if (deferral_event) {
deferral_event->Signal(); deferral_event->Signal();
} }
return ResultSuccess; // Set our output.
*out_server_port = std::addressof(port->GetServerPort());
// We succeeded.
R_SUCCEED();
} }
Result ServiceManager::UnregisterService(const std::string& name) { Result ServiceManager::UnregisterService(const std::string& name) {
@ -91,7 +94,8 @@ Result ServiceManager::UnregisterService(const std::string& name) {
return ResultSuccess; return ResultSuccess;
} }
Result ServiceManager::GetServicePort(Kernel::KPort** out_port, const std::string& name) { Result ServiceManager::GetServicePort(Kernel::KClientPort** out_client_port,
const std::string& name) {
R_TRY(ValidateServiceName(name)); R_TRY(ValidateServiceName(name));
std::scoped_lock lk{lock}; std::scoped_lock lk{lock};
@ -101,7 +105,7 @@ Result ServiceManager::GetServicePort(Kernel::KPort** out_port, const std::strin
return Service::SM::ResultNotRegistered; return Service::SM::ResultNotRegistered;
} }
*out_port = it->second; *out_client_port = it->second;
return ResultSuccess; return ResultSuccess;
} }
@ -172,8 +176,8 @@ Result SM::GetServiceImpl(Kernel::KClientSession** out_client_session, HLEReques
std::string name(PopServiceName(rp)); std::string name(PopServiceName(rp));
// Find the named port. // Find the named port.
Kernel::KPort* port{}; Kernel::KClientPort* client_port{};
auto port_result = service_manager.GetServicePort(&port, name); auto port_result = service_manager.GetServicePort(&client_port, name);
if (port_result == Service::SM::ResultInvalidServiceName) { if (port_result == Service::SM::ResultInvalidServiceName) {
LOG_ERROR(Service_SM, "Invalid service name '{}'", name); LOG_ERROR(Service_SM, "Invalid service name '{}'", name);
return Service::SM::ResultInvalidServiceName; return Service::SM::ResultInvalidServiceName;
@ -187,7 +191,7 @@ Result SM::GetServiceImpl(Kernel::KClientSession** out_client_session, HLEReques
// Create a new session. // Create a new session.
Kernel::KClientSession* session{}; Kernel::KClientSession* session{};
if (const auto result = port->GetClientPort().CreateSession(&session); result.IsError()) { if (const auto result = client_port->CreateSession(&session); result.IsError()) {
LOG_ERROR(Service_SM, "called service={} -> error 0x{:08X}", name, result.raw); LOG_ERROR(Service_SM, "called service={} -> error 0x{:08X}", name, result.raw);
return result; return result;
} }
@ -221,7 +225,9 @@ void SM::RegisterServiceImpl(HLERequestContext& ctx, std::string name, u32 max_s
LOG_DEBUG(Service_SM, "called with name={}, max_session_count={}, is_light={}", name, LOG_DEBUG(Service_SM, "called with name={}, max_session_count={}, is_light={}", name,
max_session_count, is_light); max_session_count, is_light);
if (const auto result = service_manager.RegisterService(name, max_session_count, nullptr); Kernel::KServerPort* server_port{};
if (const auto result = service_manager.RegisterService(std::addressof(server_port), name,
max_session_count, nullptr);
result.IsError()) { result.IsError()) {
LOG_ERROR(Service_SM, "failed to register service with error_code={:08X}", result.raw); LOG_ERROR(Service_SM, "failed to register service with error_code={:08X}", result.raw);
IPC::ResponseBuilder rb{ctx, 2}; IPC::ResponseBuilder rb{ctx, 2};
@ -229,13 +235,9 @@ void SM::RegisterServiceImpl(HLERequestContext& ctx, std::string name, u32 max_s
return; return;
} }
auto* port = Kernel::KPort::Create(kernel);
port->Initialize(ServerSessionCountMax, is_light, 0);
SCOPE_EXIT({ port->GetClientPort().Close(); });
IPC::ResponseBuilder rb{ctx, 2, 0, 1, IPC::ResponseBuilder::Flags::AlwaysMoveHandles}; IPC::ResponseBuilder rb{ctx, 2, 0, 1, IPC::ResponseBuilder::Flags::AlwaysMoveHandles};
rb.Push(ResultSuccess); rb.Push(ResultSuccess);
rb.PushMoveObjects(port->GetServerPort()); rb.PushMoveObjects(server_port);
} }
void SM::UnregisterService(HLERequestContext& ctx) { void SM::UnregisterService(HLERequestContext& ctx) {

View File

@ -56,10 +56,10 @@ public:
explicit ServiceManager(Kernel::KernelCore& kernel_); explicit ServiceManager(Kernel::KernelCore& kernel_);
~ServiceManager(); ~ServiceManager();
Result RegisterService(std::string name, u32 max_sessions, Result RegisterService(Kernel::KServerPort** out_server_port, std::string name,
SessionRequestHandlerFactory handler_factory); u32 max_sessions, SessionRequestHandlerFactory handler_factory);
Result UnregisterService(const std::string& name); Result UnregisterService(const std::string& name);
Result GetServicePort(Kernel::KPort** out_port, const std::string& name); Result GetServicePort(Kernel::KClientPort** out_client_port, const std::string& name);
template <Common::DerivedFrom<SessionRequestHandler> T> template <Common::DerivedFrom<SessionRequestHandler> T>
std::shared_ptr<T> GetService(const std::string& service_name) const { std::shared_ptr<T> GetService(const std::string& service_name) const {
@ -84,7 +84,7 @@ private:
/// Map of registered services, retrieved using GetServicePort. /// Map of registered services, retrieved using GetServicePort.
std::mutex lock; std::mutex lock;
std::unordered_map<std::string, SessionRequestHandlerFactory> registered_services; std::unordered_map<std::string, SessionRequestHandlerFactory> registered_services;
std::unordered_map<std::string, Kernel::KPort*> service_ports; std::unordered_map<std::string, Kernel::KClientPort*> service_ports;
/// Kernel context /// Kernel context
Kernel::KernelCore& kernel; Kernel::KernelCore& kernel;

View File

@ -28,7 +28,6 @@ void Controller::ConvertCurrentObjectToDomain(HLERequestContext& ctx) {
void Controller::CloneCurrentObject(HLERequestContext& ctx) { void Controller::CloneCurrentObject(HLERequestContext& ctx) {
LOG_DEBUG(Service, "called"); LOG_DEBUG(Service, "called");
auto& process = *ctx.GetThread().GetOwnerProcess();
auto session_manager = ctx.GetManager(); auto session_manager = ctx.GetManager();
// FIXME: this is duplicated from the SVC, it should just call it instead // FIXME: this is duplicated from the SVC, it should just call it instead
@ -36,11 +35,11 @@ void Controller::CloneCurrentObject(HLERequestContext& ctx) {
// Reserve a new session from the process resource limit. // Reserve a new session from the process resource limit.
Kernel::KScopedResourceReservation session_reservation( Kernel::KScopedResourceReservation session_reservation(
&process, Kernel::LimitableResource::SessionCountMax); Kernel::GetCurrentProcessPointer(kernel), Kernel::LimitableResource::SessionCountMax);
ASSERT(session_reservation.Succeeded()); ASSERT(session_reservation.Succeeded());
// Create the session. // Create the session.
Kernel::KSession* session = Kernel::KSession::Create(system.Kernel()); Kernel::KSession* session = Kernel::KSession::Create(kernel);
ASSERT(session != nullptr); ASSERT(session != nullptr);
// Initialize the session. // Initialize the session.
@ -50,7 +49,7 @@ void Controller::CloneCurrentObject(HLERequestContext& ctx) {
session_reservation.Commit(); session_reservation.Commit();
// Register the session. // Register the session.
Kernel::KSession::Register(system.Kernel(), session); Kernel::KSession::Register(kernel, session);
// Register with server manager. // Register with server manager.
session_manager->GetServerManager().RegisterSession(&session->GetServerSession(), session_manager->GetServerManager().RegisterSession(&session->GetServerSession(),

View File

@ -129,9 +129,10 @@ AppLoader_DeconstructedRomDirectory::LoadResult AppLoader_DeconstructedRomDirect
} }
metadata.Print(); metadata.Print();
// Enable NCE only for programs with 39-bit address space. // Enable NCE only for applications with 39-bit address space.
const bool is_39bit = const bool is_39bit =
metadata.GetAddressSpaceType() == FileSys::ProgramAddressSpaceType::Is39Bit; metadata.GetAddressSpaceType() == FileSys::ProgramAddressSpaceType::Is39Bit;
const bool is_application = metadata.GetPoolPartition() == FileSys::PoolPartition::Application;
Settings::SetNceEnabled(is_39bit); Settings::SetNceEnabled(is_39bit);
const std::array static_modules = {"rtld", "main", "subsdk0", "subsdk1", "subsdk2", const std::array static_modules = {"rtld", "main", "subsdk0", "subsdk1", "subsdk2",
@ -147,7 +148,7 @@ AppLoader_DeconstructedRomDirectory::LoadResult AppLoader_DeconstructedRomDirect
const auto GetPatcher = [&](size_t i) -> Core::NCE::Patcher* { const auto GetPatcher = [&](size_t i) -> Core::NCE::Patcher* {
#ifdef HAS_NCE #ifdef HAS_NCE
if (Settings::IsNceEnabled()) { if (is_application && Settings::IsNceEnabled()) {
return &module_patchers[i]; return &module_patchers[i];
} }
#endif #endif
@ -175,7 +176,7 @@ AppLoader_DeconstructedRomDirectory::LoadResult AppLoader_DeconstructedRomDirect
// Enable direct memory mapping in case of NCE. // Enable direct memory mapping in case of NCE.
const u64 fastmem_base = [&]() -> size_t { const u64 fastmem_base = [&]() -> size_t {
if (Settings::IsNceEnabled()) { if (is_application && Settings::IsNceEnabled()) {
auto& buffer = system.DeviceMemory().buffer; auto& buffer = system.DeviceMemory().buffer;
buffer.EnableDirectMappedAddress(); buffer.EnableDirectMappedAddress();
return reinterpret_cast<u64>(buffer.VirtualBasePointer()); return reinterpret_cast<u64>(buffer.VirtualBasePointer());

View File

@ -10,6 +10,7 @@
#include "common/assert.h" #include "common/assert.h"
#include "common/atomic_ops.h" #include "common/atomic_ops.h"
#include "common/common_types.h" #include "common/common_types.h"
#include "common/heap_tracker.h"
#include "common/logging/log.h" #include "common/logging/log.h"
#include "common/page_table.h" #include "common/page_table.h"
#include "common/scope_exit.h" #include "common/scope_exit.h"
@ -45,11 +46,25 @@ struct Memory::Impl {
void SetCurrentPageTable(Kernel::KProcess& process) { void SetCurrentPageTable(Kernel::KProcess& process) {
current_page_table = &process.GetPageTable().GetImpl(); current_page_table = &process.GetPageTable().GetImpl();
current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();
if (std::addressof(process) == system.ApplicationProcess() &&
Settings::IsFastmemEnabled()) {
current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();
} else {
current_page_table->fastmem_arena = nullptr;
}
#ifdef __linux__
heap_tracker.emplace(system.DeviceMemory().buffer);
buffer = std::addressof(*heap_tracker);
#else
buffer = std::addressof(system.DeviceMemory().buffer);
#endif
} }
void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size, void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
Common::PhysicalAddress target, Common::MemoryPermission perms) { Common::PhysicalAddress target, Common::MemoryPermission perms,
bool separate_heap) {
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base)); ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base));
ASSERT_MSG(target >= DramMemoryMap::Base, "Out of bounds target: {:016X}", ASSERT_MSG(target >= DramMemoryMap::Base, "Out of bounds target: {:016X}",
@ -57,20 +72,21 @@ struct Memory::Impl {
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, target, MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, target,
Common::PageType::Memory); Common::PageType::Memory);
if (Settings::IsFastmemEnabled()) { if (current_page_table->fastmem_arena) {
system.DeviceMemory().buffer.Map(GetInteger(base), buffer->Map(GetInteger(base), GetInteger(target) - DramMemoryMap::Base, size, perms,
GetInteger(target) - DramMemoryMap::Base, size, perms); separate_heap);
} }
} }
void UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size) { void UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
bool separate_heap) {
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base)); ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base));
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, 0, MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, 0,
Common::PageType::Unmapped); Common::PageType::Unmapped);
if (Settings::IsFastmemEnabled()) { if (current_page_table->fastmem_arena) {
system.DeviceMemory().buffer.Unmap(GetInteger(base), size); buffer->Unmap(GetInteger(base), size, separate_heap);
} }
} }
@ -79,17 +95,7 @@ struct Memory::Impl {
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((vaddr & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", vaddr); ASSERT_MSG((vaddr & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", vaddr);
if (!Settings::IsFastmemEnabled()) { if (!current_page_table->fastmem_arena) {
return;
}
const bool is_r = True(perms & Common::MemoryPermission::Read);
const bool is_w = True(perms & Common::MemoryPermission::Write);
const bool is_x =
True(perms & Common::MemoryPermission::Execute) && Settings::IsNceEnabled();
if (!current_page_table) {
system.DeviceMemory().buffer.Protect(vaddr, size, is_r, is_w, is_x);
return; return;
} }
@ -101,8 +107,7 @@ struct Memory::Impl {
switch (page_type) { switch (page_type) {
case Common::PageType::RasterizerCachedMemory: case Common::PageType::RasterizerCachedMemory:
if (protect_bytes > 0) { if (protect_bytes > 0) {
system.DeviceMemory().buffer.Protect(protect_begin, protect_bytes, is_r, is_w, buffer->Protect(protect_begin, protect_bytes, perms);
is_x);
protect_bytes = 0; protect_bytes = 0;
} }
break; break;
@ -115,7 +120,7 @@ struct Memory::Impl {
} }
if (protect_bytes > 0) { if (protect_bytes > 0) {
system.DeviceMemory().buffer.Protect(protect_begin, protect_bytes, is_r, is_w, is_x); buffer->Protect(protect_begin, protect_bytes, perms);
} }
} }
@ -239,7 +244,7 @@ struct Memory::Impl {
bool WalkBlock(const Common::ProcessAddress addr, const std::size_t size, auto on_unmapped, bool WalkBlock(const Common::ProcessAddress addr, const std::size_t size, auto on_unmapped,
auto on_memory, auto on_rasterizer, auto increment) { auto on_memory, auto on_rasterizer, auto increment) {
const auto& page_table = system.ApplicationProcess()->GetPageTable().GetImpl(); const auto& page_table = *current_page_table;
std::size_t remaining_size = size; std::size_t remaining_size = size;
std::size_t page_index = addr >> YUZU_PAGEBITS; std::size_t page_index = addr >> YUZU_PAGEBITS;
std::size_t page_offset = addr & YUZU_PAGEMASK; std::size_t page_offset = addr & YUZU_PAGEMASK;
@ -484,8 +489,10 @@ struct Memory::Impl {
return; return;
} }
if (Settings::IsFastmemEnabled()) { if (current_page_table->fastmem_arena) {
system.DeviceMemory().buffer.Protect(vaddr, size, !debug, !debug); const auto perm{debug ? Common::MemoryPermission{}
: Common::MemoryPermission::ReadWrite};
buffer->Protect(vaddr, size, perm);
} }
// Iterate over a contiguous CPU address space, marking/unmarking the region. // Iterate over a contiguous CPU address space, marking/unmarking the region.
@ -541,10 +548,15 @@ struct Memory::Impl {
return; return;
} }
if (Settings::IsFastmemEnabled()) { if (current_page_table->fastmem_arena) {
const bool is_read_enable = Common::MemoryPermission perm{};
!Settings::values.use_reactive_flushing.GetValue() || !cached; if (!Settings::values.use_reactive_flushing.GetValue() || !cached) {
system.DeviceMemory().buffer.Protect(vaddr, size, is_read_enable, !cached); perm |= Common::MemoryPermission::Read;
}
if (!cached) {
perm |= Common::MemoryPermission::Write;
}
buffer->Protect(vaddr, size, perm);
} }
// Iterate over a contiguous CPU address space, which corresponds to the specified GPU // Iterate over a contiguous CPU address space, which corresponds to the specified GPU
@ -718,6 +730,17 @@ struct Memory::Impl {
GetInteger(vaddr), []() {}, []() {}); GetInteger(vaddr), []() {}, []() {});
} }
void FixPageProtection(u64 vaddr) {
vaddr = Common::AlignDown(vaddr, YUZU_PAGESIZE);
if (!AddressSpaceContains(*current_page_table, vaddr, 1)) [[unlikely]] {
return;
}
ProtectRegion(*current_page_table, vaddr, YUZU_PAGESIZE,
Common::MemoryPermission::ReadWrite);
}
/** /**
* Reads a particular data type out of memory at the given virtual address. * Reads a particular data type out of memory at the given virtual address.
* *
@ -855,6 +878,13 @@ struct Memory::Impl {
std::array<GPUDirtyState, Core::Hardware::NUM_CPU_CORES> rasterizer_write_areas{}; std::array<GPUDirtyState, Core::Hardware::NUM_CPU_CORES> rasterizer_write_areas{};
std::span<Core::GPUDirtyMemoryManager> gpu_dirty_managers; std::span<Core::GPUDirtyMemoryManager> gpu_dirty_managers;
std::mutex sys_core_guard; std::mutex sys_core_guard;
std::optional<Common::HeapTracker> heap_tracker;
#ifdef __linux__
Common::HeapTracker* buffer{};
#else
Common::HostMemory* buffer{};
#endif
}; };
Memory::Memory(Core::System& system_) : system{system_} { Memory::Memory(Core::System& system_) : system{system_} {
@ -872,12 +902,14 @@ void Memory::SetCurrentPageTable(Kernel::KProcess& process) {
} }
void Memory::MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size, void Memory::MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
Common::PhysicalAddress target, Common::MemoryPermission perms) { Common::PhysicalAddress target, Common::MemoryPermission perms,
impl->MapMemoryRegion(page_table, base, size, target, perms); bool separate_heap) {
impl->MapMemoryRegion(page_table, base, size, target, perms, separate_heap);
} }
void Memory::UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size) { void Memory::UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
impl->UnmapRegion(page_table, base, size); bool separate_heap) {
impl->UnmapRegion(page_table, base, size, separate_heap);
} }
void Memory::ProtectRegion(Common::PageTable& page_table, Common::ProcessAddress vaddr, u64 size, void Memory::ProtectRegion(Common::PageTable& page_table, Common::ProcessAddress vaddr, u64 size,
@ -886,8 +918,7 @@ void Memory::ProtectRegion(Common::PageTable& page_table, Common::ProcessAddress
} }
bool Memory::IsValidVirtualAddress(const Common::ProcessAddress vaddr) const { bool Memory::IsValidVirtualAddress(const Common::ProcessAddress vaddr) const {
const Kernel::KProcess& process = *system.ApplicationProcess(); const auto& page_table = *impl->current_page_table;
const auto& page_table = process.GetPageTable().GetImpl();
const size_t page = vaddr >> YUZU_PAGEBITS; const size_t page = vaddr >> YUZU_PAGEBITS;
if (page >= page_table.pointers.size()) { if (page >= page_table.pointers.size()) {
return false; return false;
@ -1048,7 +1079,9 @@ void Memory::FlushRegion(Common::ProcessAddress dest_addr, size_t size) {
} }
bool Memory::InvalidateNCE(Common::ProcessAddress vaddr, size_t size) { bool Memory::InvalidateNCE(Common::ProcessAddress vaddr, size_t size) {
bool mapped = true; [[maybe_unused]] bool mapped = true;
[[maybe_unused]] bool rasterizer = false;
u8* const ptr = impl->GetPointerImpl( u8* const ptr = impl->GetPointerImpl(
GetInteger(vaddr), GetInteger(vaddr),
[&] { [&] {
@ -1056,8 +1089,31 @@ bool Memory::InvalidateNCE(Common::ProcessAddress vaddr, size_t size) {
GetInteger(vaddr)); GetInteger(vaddr));
mapped = false; mapped = false;
}, },
[&] { impl->system.GPU().InvalidateRegion(GetInteger(vaddr), size); }); [&] {
return mapped && ptr != nullptr; impl->system.GPU().InvalidateRegion(GetInteger(vaddr), size);
rasterizer = true;
});
const bool mapping_exists = mapped && ptr != nullptr;
#ifdef __linux__
if (mapping_exists && !rasterizer) {
if (!impl->buffer->DeferredMapSeparateHeap(GetInteger(vaddr))) {
// GPU may have raced reprotecting this page, try to fix it.
impl->FixPageProtection(GetInteger(vaddr));
}
}
#endif
return mapping_exists;
}
bool Memory::InvalidateSeparateHeap(void* fault_address) {
#ifdef __linux__
return impl->buffer->DeferredMapSeparateHeap(static_cast<u8*>(fault_address));
#else
return false;
#endif
} }
} // namespace Core::Memory } // namespace Core::Memory

View File

@ -86,7 +86,8 @@ public:
* @param perms The permissions to map the memory with. * @param perms The permissions to map the memory with.
*/ */
void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size, void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
Common::PhysicalAddress target, Common::MemoryPermission perms); Common::PhysicalAddress target, Common::MemoryPermission perms,
bool separate_heap);
/** /**
* Unmaps a region of the emulated process address space. * Unmaps a region of the emulated process address space.
@ -95,7 +96,8 @@ public:
* @param base The address to begin unmapping at. * @param base The address to begin unmapping at.
* @param size The amount of bytes to unmap. * @param size The amount of bytes to unmap.
*/ */
void UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size); void UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
bool separate_heap);
/** /**
* Protects a region of the emulated process address space with the new permissions. * Protects a region of the emulated process address space with the new permissions.
@ -486,6 +488,7 @@ public:
void SetGPUDirtyManagers(std::span<Core::GPUDirtyMemoryManager> managers); void SetGPUDirtyManagers(std::span<Core::GPUDirtyMemoryManager> managers);
void InvalidateRegion(Common::ProcessAddress dest_addr, size_t size); void InvalidateRegion(Common::ProcessAddress dest_addr, size_t size);
bool InvalidateNCE(Common::ProcessAddress vaddr, size_t size); bool InvalidateNCE(Common::ProcessAddress vaddr, size_t size);
bool InvalidateSeparateHeap(void* fault_address);
void FlushRegion(Common::ProcessAddress dest_addr, size_t size); void FlushRegion(Common::ProcessAddress dest_addr, size_t size);
private: private:

View File

@ -74,11 +74,6 @@ std::optional<OutAttr> OutputAttrPointer(EmitContext& ctx, IR::Attribute attr) {
case IR::Attribute::ClipDistance7: { case IR::Attribute::ClipDistance7: {
const u32 base{static_cast<u32>(IR::Attribute::ClipDistance0)}; const u32 base{static_cast<u32>(IR::Attribute::ClipDistance0)};
const u32 index{static_cast<u32>(attr) - base}; const u32 index{static_cast<u32>(attr) - base};
if (index >= ctx.profile.max_user_clip_distances) {
LOG_WARNING(Shader, "Ignoring clip distance store {} >= {} supported", index,
ctx.profile.max_user_clip_distances);
return std::nullopt;
}
const Id clip_num{ctx.Const(index)}; const Id clip_num{ctx.Const(index)};
return OutputAccessChain(ctx, ctx.output_f32, ctx.clip_distances, clip_num); return OutputAccessChain(ctx, ctx.output_f32, ctx.clip_distances, clip_num);
} }

View File

@ -1532,8 +1532,7 @@ void EmitContext::DefineOutputs(const IR::Program& program) {
if (stage == Stage::Fragment) { if (stage == Stage::Fragment) {
throw NotImplementedException("Storing ClipDistance in fragment stage"); throw NotImplementedException("Storing ClipDistance in fragment stage");
} }
const Id type{TypeArray( const Id type{TypeArray(F32[1], Const(8U))};
F32[1], Const(std::min(info.used_clip_distances, profile.max_user_clip_distances)))};
clip_distances = DefineOutput(*this, type, invocations, spv::BuiltIn::ClipDistance); clip_distances = DefineOutput(*this, type, invocations, spv::BuiltIn::ClipDistance);
} }
if (info.stores[IR::Attribute::Layer] && if (info.stores[IR::Attribute::Layer] &&

View File

@ -913,11 +913,7 @@ void GatherInfoFromHeader(Environment& env, Info& info) {
} }
for (size_t index = 0; index < 8; ++index) { for (size_t index = 0; index < 8; ++index) {
const u16 mask{header.vtg.omap_systemc.clip_distances}; const u16 mask{header.vtg.omap_systemc.clip_distances};
const bool used{((mask >> index) & 1) != 0}; info.stores.Set(IR::Attribute::ClipDistance0 + index, ((mask >> index) & 1) != 0);
info.stores.Set(IR::Attribute::ClipDistance0 + index, used);
if (used) {
info.used_clip_distances = static_cast<u32>(index) + 1;
}
} }
info.stores.Set(IR::Attribute::PrimitiveId, info.stores.Set(IR::Attribute::PrimitiveId,
header.vtg.omap_systemb.primitive_array_id != 0); header.vtg.omap_systemb.primitive_array_id != 0);

View File

@ -87,8 +87,6 @@ struct Profile {
bool has_broken_robust{}; bool has_broken_robust{};
u64 min_ssbo_alignment{}; u64 min_ssbo_alignment{};
u32 max_user_clip_distances{};
}; };
} // namespace Shader } // namespace Shader

View File

@ -324,8 +324,6 @@ struct Info {
bool requires_layer_emulation{}; bool requires_layer_emulation{};
IR::Attribute emulated_layer{}; IR::Attribute emulated_layer{};
u32 used_clip_distances{};
boost::container::static_vector<ConstantBufferDescriptor, MAX_CBUFS> boost::container::static_vector<ConstantBufferDescriptor, MAX_CBUFS>
constant_buffer_descriptors; constant_buffer_descriptors;
boost::container::static_vector<StorageBufferDescriptor, MAX_SSBOS> storage_buffers_descriptors; boost::container::static_vector<StorageBufferDescriptor, MAX_SSBOS> storage_buffers_descriptors;

View File

@ -12,6 +12,7 @@ using namespace Common::Literals;
static constexpr size_t VIRTUAL_SIZE = 1ULL << 39; static constexpr size_t VIRTUAL_SIZE = 1ULL << 39;
static constexpr size_t BACKING_SIZE = 4_GiB; static constexpr size_t BACKING_SIZE = 4_GiB;
static constexpr auto PERMS = Common::MemoryPermission::ReadWrite; static constexpr auto PERMS = Common::MemoryPermission::ReadWrite;
static constexpr auto HEAP = false;
TEST_CASE("HostMemory: Initialize and deinitialize", "[common]") { TEST_CASE("HostMemory: Initialize and deinitialize", "[common]") {
{ HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); } { HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); }
@ -20,7 +21,7 @@ TEST_CASE("HostMemory: Initialize and deinitialize", "[common]") {
TEST_CASE("HostMemory: Simple map", "[common]") { TEST_CASE("HostMemory: Simple map", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x5000, 0x8000, 0x1000, PERMS); mem.Map(0x5000, 0x8000, 0x1000, PERMS, HEAP);
volatile u8* const data = mem.VirtualBasePointer() + 0x5000; volatile u8* const data = mem.VirtualBasePointer() + 0x5000;
data[0] = 50; data[0] = 50;
@ -29,8 +30,8 @@ TEST_CASE("HostMemory: Simple map", "[common]") {
TEST_CASE("HostMemory: Simple mirror map", "[common]") { TEST_CASE("HostMemory: Simple mirror map", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x5000, 0x3000, 0x2000, PERMS); mem.Map(0x5000, 0x3000, 0x2000, PERMS, HEAP);
mem.Map(0x8000, 0x4000, 0x1000, PERMS); mem.Map(0x8000, 0x4000, 0x1000, PERMS, HEAP);
volatile u8* const mirror_a = mem.VirtualBasePointer() + 0x5000; volatile u8* const mirror_a = mem.VirtualBasePointer() + 0x5000;
volatile u8* const mirror_b = mem.VirtualBasePointer() + 0x8000; volatile u8* const mirror_b = mem.VirtualBasePointer() + 0x8000;
@ -40,116 +41,116 @@ TEST_CASE("HostMemory: Simple mirror map", "[common]") {
TEST_CASE("HostMemory: Simple unmap", "[common]") { TEST_CASE("HostMemory: Simple unmap", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x5000, 0x3000, 0x2000, PERMS); mem.Map(0x5000, 0x3000, 0x2000, PERMS, HEAP);
volatile u8* const data = mem.VirtualBasePointer() + 0x5000; volatile u8* const data = mem.VirtualBasePointer() + 0x5000;
data[75] = 50; data[75] = 50;
REQUIRE(data[75] == 50); REQUIRE(data[75] == 50);
mem.Unmap(0x5000, 0x2000); mem.Unmap(0x5000, 0x2000, HEAP);
} }
TEST_CASE("HostMemory: Simple unmap and remap", "[common]") { TEST_CASE("HostMemory: Simple unmap and remap", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x5000, 0x3000, 0x2000, PERMS); mem.Map(0x5000, 0x3000, 0x2000, PERMS, HEAP);
volatile u8* const data = mem.VirtualBasePointer() + 0x5000; volatile u8* const data = mem.VirtualBasePointer() + 0x5000;
data[0] = 50; data[0] = 50;
REQUIRE(data[0] == 50); REQUIRE(data[0] == 50);
mem.Unmap(0x5000, 0x2000); mem.Unmap(0x5000, 0x2000, HEAP);
mem.Map(0x5000, 0x3000, 0x2000, PERMS); mem.Map(0x5000, 0x3000, 0x2000, PERMS, HEAP);
REQUIRE(data[0] == 50); REQUIRE(data[0] == 50);
mem.Map(0x7000, 0x2000, 0x5000, PERMS); mem.Map(0x7000, 0x2000, 0x5000, PERMS, HEAP);
REQUIRE(data[0x3000] == 50); REQUIRE(data[0x3000] == 50);
} }
TEST_CASE("HostMemory: Nieche allocation", "[common]") { TEST_CASE("HostMemory: Nieche allocation", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x0000, 0, 0x20000, PERMS); mem.Map(0x0000, 0, 0x20000, PERMS, HEAP);
mem.Unmap(0x0000, 0x4000); mem.Unmap(0x0000, 0x4000, HEAP);
mem.Map(0x1000, 0, 0x2000, PERMS); mem.Map(0x1000, 0, 0x2000, PERMS, HEAP);
mem.Map(0x3000, 0, 0x1000, PERMS); mem.Map(0x3000, 0, 0x1000, PERMS, HEAP);
mem.Map(0, 0, 0x1000, PERMS); mem.Map(0, 0, 0x1000, PERMS, HEAP);
} }
TEST_CASE("HostMemory: Full unmap", "[common]") { TEST_CASE("HostMemory: Full unmap", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x8000, 0, 0x4000, PERMS); mem.Map(0x8000, 0, 0x4000, PERMS, HEAP);
mem.Unmap(0x8000, 0x4000); mem.Unmap(0x8000, 0x4000, HEAP);
mem.Map(0x6000, 0, 0x16000, PERMS); mem.Map(0x6000, 0, 0x16000, PERMS, HEAP);
} }
TEST_CASE("HostMemory: Right out of bounds unmap", "[common]") { TEST_CASE("HostMemory: Right out of bounds unmap", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x0000, 0, 0x4000, PERMS); mem.Map(0x0000, 0, 0x4000, PERMS, HEAP);
mem.Unmap(0x2000, 0x4000); mem.Unmap(0x2000, 0x4000, HEAP);
mem.Map(0x2000, 0x80000, 0x4000, PERMS); mem.Map(0x2000, 0x80000, 0x4000, PERMS, HEAP);
} }
TEST_CASE("HostMemory: Left out of bounds unmap", "[common]") { TEST_CASE("HostMemory: Left out of bounds unmap", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x8000, 0, 0x4000, PERMS); mem.Map(0x8000, 0, 0x4000, PERMS, HEAP);
mem.Unmap(0x6000, 0x4000); mem.Unmap(0x6000, 0x4000, HEAP);
mem.Map(0x8000, 0, 0x2000, PERMS); mem.Map(0x8000, 0, 0x2000, PERMS, HEAP);
} }
TEST_CASE("HostMemory: Multiple placeholder unmap", "[common]") { TEST_CASE("HostMemory: Multiple placeholder unmap", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x0000, 0, 0x4000, PERMS); mem.Map(0x0000, 0, 0x4000, PERMS, HEAP);
mem.Map(0x4000, 0, 0x1b000, PERMS); mem.Map(0x4000, 0, 0x1b000, PERMS, HEAP);
mem.Unmap(0x3000, 0x1c000); mem.Unmap(0x3000, 0x1c000, HEAP);
mem.Map(0x3000, 0, 0x20000, PERMS); mem.Map(0x3000, 0, 0x20000, PERMS, HEAP);
} }
TEST_CASE("HostMemory: Unmap between placeholders", "[common]") { TEST_CASE("HostMemory: Unmap between placeholders", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x0000, 0, 0x4000, PERMS); mem.Map(0x0000, 0, 0x4000, PERMS, HEAP);
mem.Map(0x4000, 0, 0x4000, PERMS); mem.Map(0x4000, 0, 0x4000, PERMS, HEAP);
mem.Unmap(0x2000, 0x4000); mem.Unmap(0x2000, 0x4000, HEAP);
mem.Map(0x2000, 0, 0x4000, PERMS); mem.Map(0x2000, 0, 0x4000, PERMS, HEAP);
} }
TEST_CASE("HostMemory: Unmap to origin", "[common]") { TEST_CASE("HostMemory: Unmap to origin", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x4000, 0, 0x4000, PERMS); mem.Map(0x4000, 0, 0x4000, PERMS, HEAP);
mem.Map(0x8000, 0, 0x4000, PERMS); mem.Map(0x8000, 0, 0x4000, PERMS, HEAP);
mem.Unmap(0x4000, 0x4000); mem.Unmap(0x4000, 0x4000, HEAP);
mem.Map(0, 0, 0x4000, PERMS); mem.Map(0, 0, 0x4000, PERMS, HEAP);
mem.Map(0x4000, 0, 0x4000, PERMS); mem.Map(0x4000, 0, 0x4000, PERMS, HEAP);
} }
TEST_CASE("HostMemory: Unmap to right", "[common]") { TEST_CASE("HostMemory: Unmap to right", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x4000, 0, 0x4000, PERMS); mem.Map(0x4000, 0, 0x4000, PERMS, HEAP);
mem.Map(0x8000, 0, 0x4000, PERMS); mem.Map(0x8000, 0, 0x4000, PERMS, HEAP);
mem.Unmap(0x8000, 0x4000); mem.Unmap(0x8000, 0x4000, HEAP);
mem.Map(0x8000, 0, 0x4000, PERMS); mem.Map(0x8000, 0, 0x4000, PERMS, HEAP);
} }
TEST_CASE("HostMemory: Partial right unmap check bindings", "[common]") { TEST_CASE("HostMemory: Partial right unmap check bindings", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x4000, 0x10000, 0x4000, PERMS); mem.Map(0x4000, 0x10000, 0x4000, PERMS, HEAP);
volatile u8* const ptr = mem.VirtualBasePointer() + 0x4000; volatile u8* const ptr = mem.VirtualBasePointer() + 0x4000;
ptr[0x1000] = 17; ptr[0x1000] = 17;
mem.Unmap(0x6000, 0x2000); mem.Unmap(0x6000, 0x2000, HEAP);
REQUIRE(ptr[0x1000] == 17); REQUIRE(ptr[0x1000] == 17);
} }
TEST_CASE("HostMemory: Partial left unmap check bindings", "[common]") { TEST_CASE("HostMemory: Partial left unmap check bindings", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x4000, 0x10000, 0x4000, PERMS); mem.Map(0x4000, 0x10000, 0x4000, PERMS, HEAP);
volatile u8* const ptr = mem.VirtualBasePointer() + 0x4000; volatile u8* const ptr = mem.VirtualBasePointer() + 0x4000;
ptr[0x3000] = 19; ptr[0x3000] = 19;
ptr[0x3fff] = 12; ptr[0x3fff] = 12;
mem.Unmap(0x4000, 0x2000); mem.Unmap(0x4000, 0x2000, HEAP);
REQUIRE(ptr[0x3000] == 19); REQUIRE(ptr[0x3000] == 19);
REQUIRE(ptr[0x3fff] == 12); REQUIRE(ptr[0x3fff] == 12);
@ -157,13 +158,13 @@ TEST_CASE("HostMemory: Partial left unmap check bindings", "[common]") {
TEST_CASE("HostMemory: Partial middle unmap check bindings", "[common]") { TEST_CASE("HostMemory: Partial middle unmap check bindings", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x4000, 0x10000, 0x4000, PERMS); mem.Map(0x4000, 0x10000, 0x4000, PERMS, HEAP);
volatile u8* const ptr = mem.VirtualBasePointer() + 0x4000; volatile u8* const ptr = mem.VirtualBasePointer() + 0x4000;
ptr[0x0000] = 19; ptr[0x0000] = 19;
ptr[0x3fff] = 12; ptr[0x3fff] = 12;
mem.Unmap(0x1000, 0x2000); mem.Unmap(0x1000, 0x2000, HEAP);
REQUIRE(ptr[0x0000] == 19); REQUIRE(ptr[0x0000] == 19);
REQUIRE(ptr[0x3fff] == 12); REQUIRE(ptr[0x3fff] == 12);
@ -171,14 +172,14 @@ TEST_CASE("HostMemory: Partial middle unmap check bindings", "[common]") {
TEST_CASE("HostMemory: Partial sparse middle unmap and check bindings", "[common]") { TEST_CASE("HostMemory: Partial sparse middle unmap and check bindings", "[common]") {
HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE); HostMemory mem(BACKING_SIZE, VIRTUAL_SIZE);
mem.Map(0x4000, 0x10000, 0x2000, PERMS); mem.Map(0x4000, 0x10000, 0x2000, PERMS, HEAP);
mem.Map(0x6000, 0x20000, 0x2000, PERMS); mem.Map(0x6000, 0x20000, 0x2000, PERMS, HEAP);
volatile u8* const ptr = mem.VirtualBasePointer() + 0x4000; volatile u8* const ptr = mem.VirtualBasePointer() + 0x4000;
ptr[0x0000] = 19; ptr[0x0000] = 19;
ptr[0x3fff] = 12; ptr[0x3fff] = 12;
mem.Unmap(0x5000, 0x2000); mem.Unmap(0x5000, 0x2000, HEAP);
REQUIRE(ptr[0x0000] == 19); REQUIRE(ptr[0x0000] == 19);
REQUIRE(ptr[0x3fff] == 12); REQUIRE(ptr[0x3fff] == 12);

View File

@ -233,7 +233,6 @@ ShaderCache::ShaderCache(RasterizerOpenGL& rasterizer_, Core::Frontend::EmuWindo
.ignore_nan_fp_comparisons = true, .ignore_nan_fp_comparisons = true,
.gl_max_compute_smem_size = device.GetMaxComputeSharedMemorySize(), .gl_max_compute_smem_size = device.GetMaxComputeSharedMemorySize(),
.min_ssbo_alignment = device.GetShaderStorageBufferAlignment(), .min_ssbo_alignment = device.GetShaderStorageBufferAlignment(),
.max_user_clip_distances = 8,
}, },
host_info{ host_info{
.support_float64 = true, .support_float64 = true,

View File

@ -374,7 +374,6 @@ PipelineCache::PipelineCache(RasterizerVulkan& rasterizer_, const Device& device
.has_broken_robust = .has_broken_robust =
device.IsNvidia() && device.GetNvidiaArch() <= NvidiaArchitecture::Arch_Pascal, device.IsNvidia() && device.GetNvidiaArch() <= NvidiaArchitecture::Arch_Pascal,
.min_ssbo_alignment = device.GetStorageBufferAlignment(), .min_ssbo_alignment = device.GetStorageBufferAlignment(),
.max_user_clip_distances = device.GetMaxUserClipDistances(),
}; };
host_info = Shader::HostTranslateInfo{ host_info = Shader::HostTranslateInfo{

View File

@ -755,10 +755,10 @@ VkFormat Device::GetSupportedFormat(VkFormat wanted_format, VkFormatFeatureFlags
// The wanted format is not supported by hardware, search for alternatives // The wanted format is not supported by hardware, search for alternatives
const VkFormat* alternatives = GetFormatAlternatives(wanted_format); const VkFormat* alternatives = GetFormatAlternatives(wanted_format);
if (alternatives == nullptr) { if (alternatives == nullptr) {
ASSERT_MSG(false, LOG_ERROR(Render_Vulkan,
"Format={} with usage={} and type={} has no defined alternatives and host " "Format={} with usage={} and type={} has no defined alternatives and host "
"hardware does not support it", "hardware does not support it",
wanted_format, wanted_usage, format_type); wanted_format, wanted_usage, format_type);
return wanted_format; return wanted_format;
} }
@ -774,10 +774,10 @@ VkFormat Device::GetSupportedFormat(VkFormat wanted_format, VkFormatFeatureFlags
} }
// No alternatives found, panic // No alternatives found, panic
ASSERT_MSG(false, LOG_ERROR(Render_Vulkan,
"Format={} with usage={} and type={} is not supported by the host hardware and " "Format={} with usage={} and type={} is not supported by the host hardware and "
"doesn't support any of the alternatives", "doesn't support any of the alternatives",
wanted_format, wanted_usage, format_type); wanted_format, wanted_usage, format_type);
return wanted_format; return wanted_format;
} }

View File

@ -665,10 +665,6 @@ public:
return properties.properties.limits.maxViewports; return properties.properties.limits.maxViewports;
} }
u32 GetMaxUserClipDistances() const {
return properties.properties.limits.maxClipDistances;
}
bool SupportsConditionalBarriers() const { bool SupportsConditionalBarriers() const {
return supports_conditional_barriers; return supports_conditional_barriers;
} }

View File

@ -246,7 +246,9 @@ void SetObjectName(const DeviceDispatch* dld, VkDevice device, T handle, VkObjec
.objectHandle = reinterpret_cast<u64>(handle), .objectHandle = reinterpret_cast<u64>(handle),
.pObjectName = name, .pObjectName = name,
}; };
Check(dld->vkSetDebugUtilsObjectNameEXT(device, &name_info)); if (dld->vkSetDebugUtilsObjectNameEXT) {
Check(dld->vkSetDebugUtilsObjectNameEXT(device, &name_info));
}
} }
} // Anonymous namespace } // Anonymous namespace