citra/src/video_core/renderer_vulkan/vk_present_window.cpp

527 lines
18 KiB
C++

// Copyright 2023 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/microprofile.h"
#include "common/settings.h"
#include "common/thread.h"
#include "core/frontend/emu_window.h"
#include "video_core/renderer_vulkan/vk_instance.h"
#include "video_core/renderer_vulkan/vk_platform.h"
#include "video_core/renderer_vulkan/vk_present_window.h"
#include "video_core/renderer_vulkan/vk_scheduler.h"
#include "video_core/renderer_vulkan/vk_swapchain.h"
#include "vk_platform.h"
#include <vk_mem_alloc.h>
MICROPROFILE_DEFINE(Vulkan_WaitPresent, "Vulkan", "Wait For Present", MP_RGB(128, 128, 128));
namespace Vulkan {
namespace {
bool CanBlitToSwapchain(const vk::PhysicalDevice& physical_device, vk::Format format) {
const vk::FormatProperties props{physical_device.getFormatProperties(format)};
return static_cast<bool>(props.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst);
}
[[nodiscard]] vk::ImageSubresourceLayers MakeImageSubresourceLayers() {
return vk::ImageSubresourceLayers{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
};
}
[[nodiscard]] vk::ImageBlit MakeImageBlit(s32 frame_width, s32 frame_height, s32 swapchain_width,
s32 swapchain_height) {
return vk::ImageBlit{
.srcSubresource = MakeImageSubresourceLayers(),
.srcOffsets =
std::array{
vk::Offset3D{
.x = 0,
.y = 0,
.z = 0,
},
vk::Offset3D{
.x = frame_width,
.y = frame_height,
.z = 1,
},
},
.dstSubresource = MakeImageSubresourceLayers(),
.dstOffsets =
std::array{
vk::Offset3D{
.x = 0,
.y = 0,
.z = 0,
},
vk::Offset3D{
.x = swapchain_width,
.y = swapchain_height,
.z = 1,
},
},
};
}
[[nodiscard]] vk::ImageCopy MakeImageCopy(u32 frame_width, u32 frame_height, u32 swapchain_width,
u32 swapchain_height) {
return vk::ImageCopy{
.srcSubresource = MakeImageSubresourceLayers(),
.srcOffset =
vk::Offset3D{
.x = 0,
.y = 0,
.z = 0,
},
.dstSubresource = MakeImageSubresourceLayers(),
.dstOffset =
vk::Offset3D{
.x = 0,
.y = 0,
.z = 0,
},
.extent =
vk::Extent3D{
.width = std::min(frame_width, swapchain_width),
.height = std::min(frame_height, swapchain_height),
.depth = 1,
},
};
}
} // Anonymous namespace
PresentWindow::PresentWindow(Frontend::EmuWindow& emu_window_, const Instance& instance_,
Scheduler& scheduler_)
: emu_window{emu_window_}, instance{instance_}, scheduler{scheduler_},
surface{CreateSurface(instance.GetInstance(), emu_window)},
next_surface{surface}, swapchain{instance, emu_window.GetFramebufferLayout().width,
emu_window.GetFramebufferLayout().height, surface},
graphics_queue{instance.GetGraphicsQueue()}, present_renderpass{CreateRenderpass()},
vsync_enabled{Settings::values.use_vsync_new.GetValue()},
blit_supported{
CanBlitToSwapchain(instance.GetPhysicalDevice(), swapchain.GetSurfaceFormat().format)},
use_present_thread{Settings::values.async_presentation.GetValue()},
last_render_surface{emu_window.GetWindowInfo().render_surface} {
const u32 num_images = swapchain.GetImageCount();
const vk::Device device = instance.GetDevice();
const vk::CommandPoolCreateInfo pool_info = {
.flags = vk::CommandPoolCreateFlagBits::eResetCommandBuffer |
vk::CommandPoolCreateFlagBits::eTransient,
.queueFamilyIndex = instance.GetGraphicsQueueFamilyIndex(),
};
command_pool = device.createCommandPool(pool_info);
const vk::CommandBufferAllocateInfo alloc_info = {
.commandPool = command_pool,
.level = vk::CommandBufferLevel::ePrimary,
.commandBufferCount = num_images,
};
const std::vector command_buffers = device.allocateCommandBuffers(alloc_info);
swap_chain.resize(num_images);
for (u32 i = 0; i < num_images; i++) {
Frame& frame = swap_chain[i];
frame.cmdbuf = command_buffers[i];
frame.render_ready = device.createSemaphore({});
frame.present_done = device.createFence({.flags = vk::FenceCreateFlagBits::eSignaled});
free_queue.push(&frame);
}
if (instance.HasDebuggingToolAttached()) {
for (u32 i = 0; i < num_images; ++i) {
Vulkan::SetObjectName(device, swap_chain[i].cmdbuf, "Swapchain Command Buffer {}", i);
Vulkan::SetObjectName(device, swap_chain[i].render_ready,
"Swapchain Semaphore: render_ready {}", i);
Vulkan::SetObjectName(device, swap_chain[i].present_done,
"Swapchain Fence: present_done {}", i);
}
}
if (use_present_thread) {
present_thread = std::jthread([this](std::stop_token token) { PresentThread(token); });
}
}
PresentWindow::~PresentWindow() {
scheduler.Finish();
const vk::Device device = instance.GetDevice();
device.destroyCommandPool(command_pool);
device.destroyRenderPass(present_renderpass);
for (auto& frame : swap_chain) {
device.destroyImageView(frame.image_view);
device.destroyFramebuffer(frame.framebuffer);
device.destroySemaphore(frame.render_ready);
device.destroyFence(frame.present_done);
vmaDestroyImage(instance.GetAllocator(), frame.image, frame.allocation);
}
}
void PresentWindow::RecreateFrame(Frame* frame, u32 width, u32 height) {
vk::Device device = instance.GetDevice();
if (frame->framebuffer) {
device.destroyFramebuffer(frame->framebuffer);
}
if (frame->image_view) {
device.destroyImageView(frame->image_view);
}
if (frame->image) {
vmaDestroyImage(instance.GetAllocator(), frame->image, frame->allocation);
}
const vk::Format format = swapchain.GetSurfaceFormat().format;
const vk::ImageCreateInfo image_info = {
.imageType = vk::ImageType::e2D,
.format = format,
.extent = {width, height, 1},
.mipLevels = 1,
.arrayLayers = 1,
.samples = vk::SampleCountFlagBits::e1,
.usage = vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc,
};
const VmaAllocationCreateInfo alloc_info = {
.flags = VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT,
.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE,
.requiredFlags = 0,
.preferredFlags = 0,
.pool = VK_NULL_HANDLE,
.pUserData = nullptr,
};
VkImage unsafe_image{};
VkImageCreateInfo unsafe_image_info = static_cast<VkImageCreateInfo>(image_info);
VkResult result = vmaCreateImage(instance.GetAllocator(), &unsafe_image_info, &alloc_info,
&unsafe_image, &frame->allocation, nullptr);
if (result != VK_SUCCESS) [[unlikely]] {
LOG_CRITICAL(Render_Vulkan, "Failed allocating texture with error {}", result);
UNREACHABLE();
}
frame->image = vk::Image{unsafe_image};
const vk::ImageViewCreateInfo view_info = {
.image = frame->image,
.viewType = vk::ImageViewType::e2D,
.format = format,
.subresourceRange{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
frame->image_view = device.createImageView(view_info);
const vk::FramebufferCreateInfo framebuffer_info = {
.renderPass = present_renderpass,
.attachmentCount = 1,
.pAttachments = &frame->image_view,
.width = width,
.height = height,
.layers = 1,
};
frame->framebuffer = instance.GetDevice().createFramebuffer(framebuffer_info);
frame->width = width;
frame->height = height;
}
Frame* PresentWindow::GetRenderFrame() {
MICROPROFILE_SCOPE(Vulkan_WaitPresent);
// Wait for free presentation frames
std::unique_lock lock{free_mutex};
free_cv.wait(lock, [this] { return !free_queue.empty(); });
// Take the frame from the queue
Frame* frame = free_queue.front();
free_queue.pop();
vk::Device device = instance.GetDevice();
vk::Result result{};
const auto wait = [&]() {
result = device.waitForFences(frame->present_done, false, std::numeric_limits<u64>::max());
return result;
};
// Wait for the presentation to be finished so all frame resources are free
while (wait() != vk::Result::eSuccess) {
// Retry if the waiting times out
if (result == vk::Result::eTimeout) {
continue;
}
// eErrorInitializationFailed occurs on Mali GPU drivers due to them
// using the ppoll() syscall which isn't correctly restarted after a signal,
// we need to manually retry waiting in that case
if (result == vk::Result::eErrorInitializationFailed) {
continue;
}
}
device.resetFences(frame->present_done);
return frame;
}
void PresentWindow::Present(Frame* frame) {
if (!use_present_thread) {
scheduler.WaitWorker();
CopyToSwapchain(frame);
free_queue.push(frame);
return;
}
scheduler.Record([this, frame](vk::CommandBuffer) {
std::unique_lock lock{queue_mutex};
present_queue.push(frame);
frame_cv.notify_one();
});
}
void PresentWindow::WaitPresent() {
if (!use_present_thread) {
return;
}
// Wait for the present queue to be empty
{
std::unique_lock queue_lock{queue_mutex};
frame_cv.wait(queue_lock, [this] { return present_queue.empty(); });
}
// The above condition will be satisfied when the last frame is taken from the queue.
// To ensure that frame has been presented as well take hold of the swapchain
// mutex.
std::scoped_lock swapchain_lock{swapchain_mutex};
}
void PresentWindow::PresentThread(std::stop_token token) {
Common::SetCurrentThreadName("VulkanPresent");
while (!token.stop_requested()) {
std::unique_lock lock{queue_mutex};
// Wait for presentation frames
Common::CondvarWait(frame_cv, lock, token, [this] { return !present_queue.empty(); });
if (token.stop_requested()) {
return;
}
// Take the frame and notify anyone waiting
Frame* frame = present_queue.front();
present_queue.pop();
frame_cv.notify_one();
// By exchanging the lock ownership we take the swapchain lock
// before the queue lock goes out of scope. This way the swapchain
// lock in WaitPresent is guaranteed to occur after here.
std::exchange(lock, std::unique_lock{swapchain_mutex});
CopyToSwapchain(frame);
// Free the frame for reuse
std::scoped_lock fl{free_mutex};
free_queue.push(frame);
free_cv.notify_one();
}
}
void PresentWindow::NotifySurfaceChanged() {
#ifdef ANDROID
std::scoped_lock lock{recreate_surface_mutex};
next_surface = CreateSurface(instance.GetInstance(), emu_window);
recreate_surface_cv.notify_one();
#endif
}
void PresentWindow::CopyToSwapchain(Frame* frame) {
const auto recreate_swapchain = [&] {
#ifdef ANDROID
{
std::unique_lock lock{recreate_surface_mutex};
recreate_surface_cv.wait(lock, [this]() { return surface != next_surface; });
surface = next_surface;
}
#endif
std::scoped_lock submit_lock{scheduler.submit_mutex};
graphics_queue.waitIdle();
swapchain.Create(frame->width, frame->height, surface);
};
#ifndef ANDROID
const bool use_vsync = Settings::values.use_vsync_new.GetValue();
const bool size_changed =
swapchain.GetWidth() != frame->width || swapchain.GetHeight() != frame->height;
const bool vsync_changed = vsync_enabled != use_vsync;
if (vsync_changed || size_changed) [[unlikely]] {
vsync_enabled = use_vsync;
recreate_swapchain();
}
#endif
while (!swapchain.AcquireNextImage()) {
recreate_swapchain();
}
const vk::Image swapchain_image = swapchain.Image();
const vk::CommandBufferBeginInfo begin_info = {
.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit,
};
const vk::CommandBuffer cmdbuf = frame->cmdbuf;
cmdbuf.begin(begin_info);
const vk::Extent2D extent = swapchain.GetExtent();
const std::array pre_barriers{
vk::ImageMemoryBarrier{
.srcAccessMask = vk::AccessFlagBits::eNone,
.dstAccessMask = vk::AccessFlagBits::eTransferWrite,
.oldLayout = vk::ImageLayout::eUndefined,
.newLayout = vk::ImageLayout::eTransferDstOptimal,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = swapchain_image,
.subresourceRange{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
vk::ImageMemoryBarrier{
.srcAccessMask = vk::AccessFlagBits::eColorAttachmentWrite,
.dstAccessMask = vk::AccessFlagBits::eTransferRead,
.oldLayout = vk::ImageLayout::eTransferSrcOptimal,
.newLayout = vk::ImageLayout::eTransferSrcOptimal,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = frame->image,
.subresourceRange{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
},
};
const vk::ImageMemoryBarrier post_barrier{
.srcAccessMask = vk::AccessFlagBits::eTransferWrite,
.dstAccessMask = vk::AccessFlagBits::eMemoryRead,
.oldLayout = vk::ImageLayout::eTransferDstOptimal,
.newLayout = vk::ImageLayout::ePresentSrcKHR,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = swapchain_image,
.subresourceRange{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = VK_REMAINING_ARRAY_LAYERS,
},
};
cmdbuf.pipelineBarrier(vk::PipelineStageFlagBits::eColorAttachmentOutput,
vk::PipelineStageFlagBits::eTransfer, vk::DependencyFlagBits::eByRegion,
{}, {}, pre_barriers);
if (blit_supported) {
cmdbuf.blitImage(frame->image, vk::ImageLayout::eTransferSrcOptimal, swapchain_image,
vk::ImageLayout::eTransferDstOptimal,
MakeImageBlit(frame->width, frame->height, extent.width, extent.height),
vk::Filter::eLinear);
} else {
cmdbuf.copyImage(frame->image, vk::ImageLayout::eTransferSrcOptimal, swapchain_image,
vk::ImageLayout::eTransferDstOptimal,
MakeImageCopy(frame->width, frame->height, extent.width, extent.height));
}
cmdbuf.pipelineBarrier(vk::PipelineStageFlagBits::eAllCommands,
vk::PipelineStageFlagBits::eAllCommands,
vk::DependencyFlagBits::eByRegion, {}, {}, post_barrier);
cmdbuf.end();
static constexpr std::array<vk::PipelineStageFlags, 2> wait_stage_masks = {
vk::PipelineStageFlagBits::eColorAttachmentOutput,
vk::PipelineStageFlagBits::eAllGraphics,
};
const vk::Semaphore present_ready = swapchain.GetPresentReadySemaphore();
const vk::Semaphore image_acquired = swapchain.GetImageAcquiredSemaphore();
const std::array wait_semaphores = {image_acquired, frame->render_ready};
vk::SubmitInfo submit_info = {
.waitSemaphoreCount = static_cast<u32>(wait_semaphores.size()),
.pWaitSemaphores = wait_semaphores.data(),
.pWaitDstStageMask = wait_stage_masks.data(),
.commandBufferCount = 1u,
.pCommandBuffers = &cmdbuf,
.signalSemaphoreCount = 1,
.pSignalSemaphores = &present_ready,
};
std::scoped_lock submit_lock{scheduler.submit_mutex};
try {
graphics_queue.submit(submit_info, frame->present_done);
} catch (vk::DeviceLostError& err) {
LOG_CRITICAL(Render_Vulkan, "Device lost during present submit: {}", err.what());
UNREACHABLE();
}
swapchain.Present();
}
vk::RenderPass PresentWindow::CreateRenderpass() {
const vk::AttachmentReference color_ref = {
.attachment = 0,
.layout = vk::ImageLayout::eGeneral,
};
const vk::SubpassDescription subpass = {
.pipelineBindPoint = vk::PipelineBindPoint::eGraphics,
.inputAttachmentCount = 0,
.pInputAttachments = nullptr,
.colorAttachmentCount = 1u,
.pColorAttachments = &color_ref,
.pResolveAttachments = 0,
.pDepthStencilAttachment = nullptr,
};
const vk::AttachmentDescription color_attachment = {
.format = swapchain.GetSurfaceFormat().format,
.loadOp = vk::AttachmentLoadOp::eClear,
.storeOp = vk::AttachmentStoreOp::eStore,
.stencilLoadOp = vk::AttachmentLoadOp::eDontCare,
.stencilStoreOp = vk::AttachmentStoreOp::eDontCare,
.initialLayout = vk::ImageLayout::eUndefined,
.finalLayout = vk::ImageLayout::eTransferSrcOptimal,
};
const vk::RenderPassCreateInfo renderpass_info = {
.attachmentCount = 1,
.pAttachments = &color_attachment,
.subpassCount = 1,
.pSubpasses = &subpass,
.dependencyCount = 0,
.pDependencies = nullptr,
};
return instance.GetDevice().createRenderPass(renderpass_info);
}
} // namespace Vulkan