/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018 CTCaer * Copyright (c) 2018 Atmosphère-NX * Copyright (c) 2019-2020 shchmue * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "../../common/memory_map.h" #include "../sec/se.h" #include "../mem/heap.h" #include "../soc/bpmp.h" #include "../soc/t210.h" #include "../sec/se_t210.h" #include "../utils/util.h" typedef struct _se_ll_t { vu32 num; vu32 addr; vu32 size; } se_ll_t; static u32 _se_rsa_mod_sizes[TEGRA_SE_RSA_KEYSLOT_COUNT]; static u32 _se_rsa_exp_sizes[TEGRA_SE_RSA_KEYSLOT_COUNT]; static void _gf256_mul_x(void *block) { u8 *pdata = (u8 *)block; u32 carry = 0; for (int i = 0xF; i >= 0; i--) { u8 b = pdata[i]; pdata[i] = (b << 1) | carry; carry = b >> 7; } if (carry) pdata[0xF] ^= 0x87; } static void _gf256_mul_x_le(void *block) { u8 *pdata = (u8 *)block; u32 carry = 0; for (u32 i = 0; i < 0x10; i++) { u8 b = pdata[i]; pdata[i] = (b << 1) | carry; carry = b >> 7; } if (carry) pdata[0x0] ^= 0x87; } static void _se_ll_init(se_ll_t *ll, u32 addr, u32 size) { ll->num = 0; ll->addr = addr; ll->size = size; } static void _se_ll_set(se_ll_t *dst, se_ll_t *src) { SE(SE_IN_LL_ADDR_REG_OFFSET) = (u32)src; SE(SE_OUT_LL_ADDR_REG_OFFSET) = (u32)dst; } static int _se_wait() { while (!(SE(SE_INT_STATUS_REG_OFFSET) & SE_INT_OP_DONE(INT_SET))) ; if (SE(SE_INT_STATUS_REG_OFFSET) & SE_INT_ERROR(INT_SET) || SE(SE_STATUS_0) & SE_STATUS_0_STATE_WAIT_IN || SE(SE_ERR_STATUS_0) != SE_ERR_STATUS_0_SE_NS_ACCESS_CLEAR) return 0; return 1; } static int _se_execute(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size) { se_ll_t *ll_dst = (se_ll_t *)(NYX_STORAGE_ADDR - 0x20), *ll_src = (se_ll_t *)(NYX_STORAGE_ADDR - 0x10); if (dst) { _se_ll_init(ll_dst, (u32)dst, dst_size); } if (src) { _se_ll_init(ll_src, (u32)src, src_size); } _se_ll_set(ll_dst, ll_src); SE(SE_ERR_STATUS_0) = SE(SE_ERR_STATUS_0); SE(SE_INT_STATUS_REG_OFFSET) = SE(SE_INT_STATUS_REG_OFFSET); bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false); SE(SE_OPERATION_REG_OFFSET) = SE_OPERATION(op); int res = _se_wait(); bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false); return res; } static int _se_execute_one_block(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size) { if (!src || !dst) return 0; u8 *block = (u8 *)malloc(0x10); memset(block, 0, 0x10); SE(SE_BLOCK_COUNT_REG_OFFSET) = 0; memcpy(block, src, src_size); int res = _se_execute(op, block, 0x10, block, 0x10); memcpy(dst, block, dst_size); free(block); return res; } static void _se_aes_ctr_set(void *ctr) { u32 *data = (u32 *)ctr; for (u32 i = 0; i < 4; i++) SE(SE_CRYPTO_CTR_REG_OFFSET + 4 * i) = data[i]; } void se_rsa_acc_ctrl(u32 rs, u32 flags) { if (flags & SE_RSA_KEY_TBL_DIS_KEY_ALL_FLAG) SE(SE_RSA_KEYTABLE_ACCESS_REG_OFFSET + 4 * rs) = ((flags >> SE_RSA_KEY_TBL_DIS_KEYUSE_FLAG_SHIFT) & SE_RSA_KEY_TBL_DIS_KEYUSE_FLAG) | ((flags & SE_RSA_KEY_TBL_DIS_KEY_READ_UPDATE_FLAG) ^ SE_RSA_KEY_TBL_DIS_KEY_ALL_COMMON_FLAG); if (flags & SE_RSA_KEY_TBL_DIS_KEY_LOCK_FLAG) SE(SE_RSA_KEYTABLE_ACCESS_LOCK_OFFSET) &= ~(1 << rs); } // se_rsa_key_set() was derived from Atmosphère's set_rsa_keyslot void se_rsa_key_set(u32 ks, const void *mod, u32 mod_size, const void *exp, u32 exp_size) { u32 *data = (u32 *)mod; for (u32 i = 0; i < mod_size / 4; i++) { SE(SE_RSA_KEYTABLE_ADDR) = RSA_KEY_NUM(ks) | RSA_KEY_TYPE(RSA_KEY_TYPE_MOD) | i; SE(SE_RSA_KEYTABLE_DATA) = byte_swap_32(data[mod_size / 4 - i - 1]); } data = (u32 *)exp; for (u32 i = 0; i < exp_size / 4; i++) { SE(SE_RSA_KEYTABLE_ADDR) = RSA_KEY_NUM(ks) | RSA_KEY_TYPE(RSA_KEY_TYPE_EXP) | i; SE(SE_RSA_KEYTABLE_DATA) = byte_swap_32(data[exp_size / 4 - i - 1]); } _se_rsa_mod_sizes[ks] = mod_size; _se_rsa_exp_sizes[ks] = exp_size; } // se_rsa_key_clear() was derived from Atmosphère's clear_rsa_keyslot void se_rsa_key_clear(u32 ks) { for (u32 i = 0; i < TEGRA_SE_RSA2048_DIGEST_SIZE / 4; i++) { SE(SE_RSA_KEYTABLE_ADDR) = RSA_KEY_NUM(ks) | RSA_KEY_TYPE(RSA_KEY_TYPE_MOD) | i; SE(SE_RSA_KEYTABLE_DATA) = 0; } for (u32 i = 0; i < TEGRA_SE_RSA2048_DIGEST_SIZE / 4; i++) { SE(SE_RSA_KEYTABLE_ADDR) = RSA_KEY_NUM(ks) | RSA_KEY_TYPE(RSA_KEY_TYPE_EXP) | i; SE(SE_RSA_KEYTABLE_DATA) = 0; } } // se_rsa_exp_mod() was derived from Atmosphère's se_synchronous_exp_mod and se_get_exp_mod_output int se_rsa_exp_mod(u32 ks, void *dst, u32 dst_size, const void *src, u32 src_size) { int res; u8 stack_buf[TEGRA_SE_RSA2048_DIGEST_SIZE]; for (u32 i = 0; i < src_size; i++) stack_buf[i] = *((u8 *)src + src_size - i - 1); SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_ALG(ALG_RSA) | SE_CONFIG_DST(DST_RSAREG); SE(SE_RSA_CONFIG) = RSA_KEY_SLOT(ks); SE(SE_RSA_KEY_SIZE_REG_OFFSET) = (_se_rsa_mod_sizes[ks] >> 6) - 1; SE(SE_RSA_EXP_SIZE_REG_OFFSET) = _se_rsa_exp_sizes[ks] >> 2; res = _se_execute(OP_START, NULL, 0, stack_buf, src_size); // Copy output hash. u32 *dst32 = (u32 *)dst; for (u32 i = 0; i < dst_size / 4; i++) dst32[dst_size / 4 - i - 1] = byte_swap_32(SE(SE_RSA_OUTPUT + (i << 2))); return res; } void se_key_acc_ctrl(u32 ks, u32 flags) { if (flags & SE_KEY_TBL_DIS_KEY_ACCESS_FLAG) SE(SE_KEY_TABLE_ACCESS_REG_OFFSET + 4 * ks) = ~flags; if (flags & SE_KEY_TBL_DIS_KEY_LOCK_FLAG) SE(SE_KEY_TABLE_ACCESS_LOCK_OFFSET) &= ~(1 << ks); } void se_aes_key_set(u32 ks, const void *key, u32 size) { u32 *data = (u32 *)key; for (u32 i = 0; i < size / 4; i++) { SE(SE_KEYTABLE_REG_OFFSET) = SE_KEYTABLE_SLOT(ks) | i; SE(SE_KEYTABLE_DATA0_REG_OFFSET) = data[i]; } } void se_aes_key_read(u32 ks, void *key, u32 size) { u32 *data = (u32 *)key; for (u32 i = 0; i < size / 4; i++) { SE(SE_KEYTABLE_REG_OFFSET) = SE_KEYTABLE_SLOT(ks) | i; data[i] = SE(SE_KEYTABLE_DATA0_REG_OFFSET); } } void se_aes_key_clear(u32 ks) { for (u32 i = 0; i < TEGRA_SE_AES_MAX_KEY_SIZE / 4; i++) { SE(SE_KEYTABLE_REG_OFFSET) = SE_KEYTABLE_SLOT(ks) | i; SE(SE_KEYTABLE_DATA0_REG_OFFSET) = 0; } } void se_aes_key_iv_clear(u32 ks) { for (u32 i = 0; i < TEGRA_SE_AES_MAX_KEY_SIZE / 4; i++) { SE(SE_KEYTABLE_REG_OFFSET) = SE_KEYTABLE_SLOT(ks) | 8 | i; SE(SE_KEYTABLE_DATA0_REG_OFFSET) = 0; } } int se_aes_unwrap_key(u32 ks_dst, u32 ks_src, const void *input) { SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_KEYTAB); SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks_src) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT); SE(SE_BLOCK_COUNT_REG_OFFSET) = 0; SE(SE_CRYPTO_KEYTABLE_DST_REG_OFFSET) = SE_CRYPTO_KEYTABLE_DST_KEY_INDEX(ks_dst); return _se_execute(OP_START, NULL, 0, input, 0x10); } int se_aes_crypt_ecb(u32 ks, u32 enc, void *dst, u32 dst_size, const void *src, u32 src_size) { if (enc) { SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT); } else { SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT); } SE(SE_BLOCK_COUNT_REG_OFFSET) = (src_size >> 4) - 1; return _se_execute(OP_START, dst, dst_size, src, src_size); } int se_aes_crypt_block_ecb(u32 ks, u32 enc, void *dst, const void *src) { return se_aes_crypt_ecb(ks, enc, dst, 0x10, src, 0x10); } int se_aes_crypt_ctr(u32 ks, void *dst, u32 dst_size, const void *src, u32 src_size, void *ctr) { SE(SE_SPARE_0_REG_OFFSET) = 1; SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_XOR_POS(XOR_BOTTOM) | SE_CRYPTO_INPUT_SEL(INPUT_LNR_CTR) | SE_CRYPTO_CTR_VAL(1) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_AHB); _se_aes_ctr_set(ctr); u32 src_size_aligned = src_size & 0xFFFFFFF0; u32 src_size_delta = src_size & 0xF; if (src_size_aligned) { SE(SE_BLOCK_COUNT_REG_OFFSET) = (src_size >> 4) - 1; if (!_se_execute(OP_START, dst, dst_size, src, src_size_aligned)) return 0; } if (src_size - src_size_aligned && src_size_aligned < dst_size) return _se_execute_one_block(OP_START, dst + src_size_aligned, MIN(src_size_delta, dst_size - src_size_aligned), src + src_size_aligned, src_size_delta); return 1; } int se_aes_xts_crypt_sec(u32 ks1, u32 ks2, u32 enc, u64 sec, void *dst, const void *src, u32 secsize) { int res = 0; u8 *tweak = (u8 *)malloc(0x10); u8 *temptweak = (u8 *)malloc(0x10); u32 *pdst = (u32 *)dst; u32 *psrc = (u32 *)src; u32 *ptweak = (u32 *)tweak; //Generate tweak. for (int i = 0xF; i >= 0; i--) { tweak[i] = sec & 0xFF; sec >>= 8; } if (!se_aes_crypt_block_ecb(ks1, 1, tweak, tweak)) goto out; memcpy(temptweak, tweak, 0x10); //We are assuming a 0x10-aligned sector size in this implementation. for (u32 i = 0; i < secsize / 0x10; i++) { for (u32 j = 0; j < 4; j++) pdst[j] = psrc[j] ^ ptweak[j]; _gf256_mul_x_le(tweak); psrc += 4; pdst += 4; } se_aes_crypt_ecb(ks2, enc, dst, secsize, dst, secsize); pdst = (u32 *)dst; memcpy(tweak, temptweak, 0x10); for (u32 i = 0; i < secsize / 0x10; i++) { for (u32 j = 0; j < 4; j++) pdst[j] = pdst[j] ^ ptweak[j]; _gf256_mul_x_le(tweak); pdst += 4; } res = 1; out:; free(temptweak); free(tweak); return res; } int se_aes_xts_crypt(u32 ks1, u32 ks2, u32 enc, u64 sec, void *dst, const void *src, u32 secsize, u32 num_secs) { u8 *pdst = (u8 *)dst; u8 *psrc = (u8 *)src; for (u32 i = 0; i < num_secs; i++) if (!se_aes_xts_crypt_sec(ks1, ks2, enc, sec + i, pdst + secsize * i, psrc + secsize * i, secsize)) return 0; return 1; } // se_aes_cmac() was derived from Atmosphère's se_compute_aes_cmac int se_aes_cmac(u32 ks, void *dst, u32 dst_size, const void *src, u32 src_size) { int res = 0; u8 *key = (u8 *)calloc(0x10, 1); u8 *last_block = (u8 *)calloc(0x10, 1); // generate derived key if (!se_aes_crypt_block_ecb(ks, 1, key, key)) goto out; _gf256_mul_x(key); if (src_size & 0xF) _gf256_mul_x(key); SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_HASHREG); SE(SE_CRYPTO_REG_OFFSET) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_INPUT_SEL(INPUT_AHB) | SE_CRYPTO_XOR_POS(XOR_TOP) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_AESOUT) | SE_CRYPTO_HASH(HASH_ENABLE) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT); se_aes_key_iv_clear(ks); u32 num_blocks = (src_size + 0xf) >> 4; if (num_blocks > 1) { SE(SE_BLOCK_COUNT_REG_OFFSET) = num_blocks - 2; if (!_se_execute(OP_START, NULL, 0, src, src_size)) goto out; SE(SE_CRYPTO_REG_OFFSET) |= SE_CRYPTO_IV_SEL(IV_UPDATED); } if (src_size & 0xf) { memcpy(last_block, src + (src_size & ~0xf), src_size & 0xf); last_block[src_size & 0xf] = 0x80; } else if (src_size >= 0x10) { memcpy(last_block, src + src_size - 0x10, 0x10); } for (u32 i = 0; i < 0x10; i++) last_block[i] ^= key[i]; SE(SE_BLOCK_COUNT_REG_OFFSET) = 0; res = _se_execute(OP_START, NULL, 0, last_block, 0x10); u32 *dst32 = (u32 *)dst; for (u32 i = 0; i < (dst_size >> 2); i++) dst32[i] = SE(SE_HASH_RESULT_REG_OFFSET + (i << 2)); out:; free(key); free(last_block); return res; } // se_calc_sha256() was derived from Atmosphère's se_calculate_sha256. int se_calc_sha256(void *dst, const void *src, u32 src_size) { int res; // Setup config for SHA256, size = BITS(src_size). SE(SE_CONFIG_REG_OFFSET) = SE_CONFIG_ENC_MODE(MODE_SHA256) | SE_CONFIG_ENC_ALG(ALG_SHA) | SE_CONFIG_DST(DST_HASHREG); SE(SE_SHA_CONFIG_REG_OFFSET) = SHA_INIT_HASH; SE(SE_SHA_MSG_LENGTH_0_REG_OFFSET) = (u32)(src_size << 3); SE(SE_SHA_MSG_LENGTH_1_REG_OFFSET) = 0; SE(SE_SHA_MSG_LENGTH_2_REG_OFFSET) = 0; SE(SE_SHA_MSG_LENGTH_3_REG_OFFSET) = 0; SE(SE_SHA_MSG_LEFT_0_REG_OFFSET) = (u32)(src_size << 3); SE(SE_SHA_MSG_LEFT_1_REG_OFFSET) = 0; SE(SE_SHA_MSG_LEFT_2_REG_OFFSET) = 0; SE(SE_SHA_MSG_LEFT_3_REG_OFFSET) = 0; // Trigger the operation. res = _se_execute(OP_START, NULL, 0, src, src_size); // Copy output hash. u32 *dst32 = (u32 *)dst; for (u32 i = 0; i < 8; i++) dst32[i] = byte_swap_32(SE(SE_HASH_RESULT_REG_OFFSET + (i << 2))); return res; } int se_calc_hmac_sha256(void *dst, const void *src, u32 src_size, const void *key, u32 key_size) { int res = 0; u8 *secret = (u8 *)malloc(0x40); u8 *ipad = (u8 *)malloc(0x40 + src_size); u8 *opad = (u8 *)malloc(0x60); if (key_size > 0x40) { if (!se_calc_sha256(secret, key, key_size)) goto out; memset(secret + 0x20, 0, 0x20); } else { memcpy(secret, key, key_size); memset(secret + key_size, 0, 0x40 - key_size); } u32 *secret32 = (u32 *)secret; u32 *ipad32 = (u32 *)ipad; u32 *opad32 = (u32 *)opad; for (u32 i = 0; i < 0x10; i++) { ipad32[i] = secret32[i] ^ 0x36363636; opad32[i] = secret32[i] ^ 0x5C5C5C5C; } memcpy(ipad + 0x40, src, src_size); if (!se_calc_sha256(dst, ipad, 0x40 + src_size)) goto out; memcpy(opad + 0x40, dst, 0x20); if (!se_calc_sha256(dst, opad, 0x60)) goto out; res = 1; out:; free(secret); free(ipad); free(opad); return res; }